

Geneviève Labrie, Ph.D.

Biologiste-entomologiste

Plan de la présentation

- Bilan des pesticides vendus
- Le principe de lutte intégrée
- Les traitements de semence insecticides
- Innocuité, utilité et efficacité résultats de recherche
- Constats en 2025
- Défis pour la réduction de l'utilisation des pesticides

Bilan des pesticides vendus au Québec

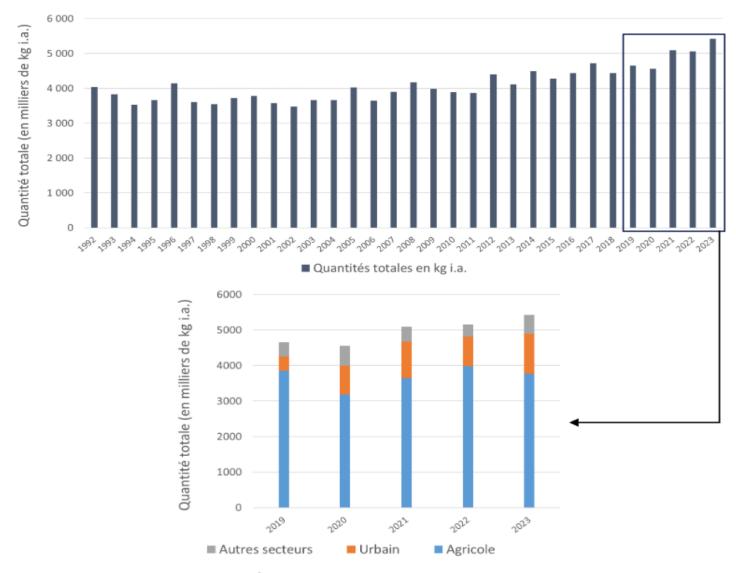


Figure 1. Évolution des ventes totales depuis 1992

- 5,4 millions d'i.a. en 2023
- 10,1% depuis les 5 dernières années
- ↑ dû au milieu urbain
- Glyphosate principal pesticide vendu (31% vente totale)
- Exclu les insecticides de semence
- Objectif de réduire de 500 000 kg d'ici 2030

Bilan des pesticides vendus au Québec

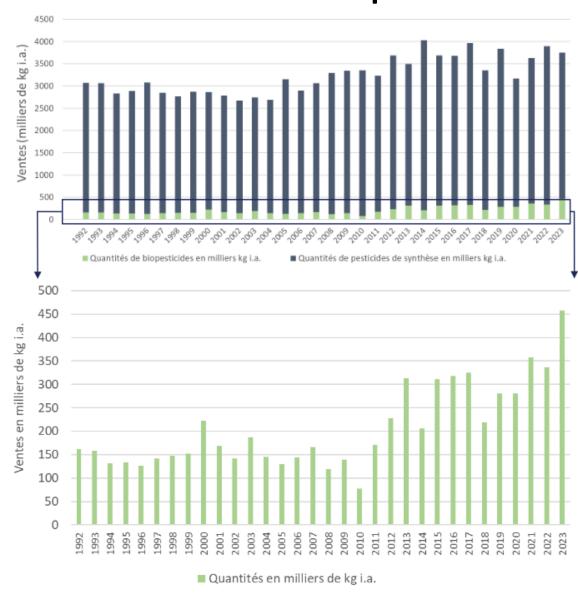


Figure 2. Ventes de pesticides de synthèse et de biopesticides dans le secteur de la production végétale de 1992 à 2023, excluant les enrobages de semences

- ↑ des biopesticides vendus
- 12% des pesticides en milieu agricole (380 000 kg. i.a.)

Bilan des pesticides vendus au Québec

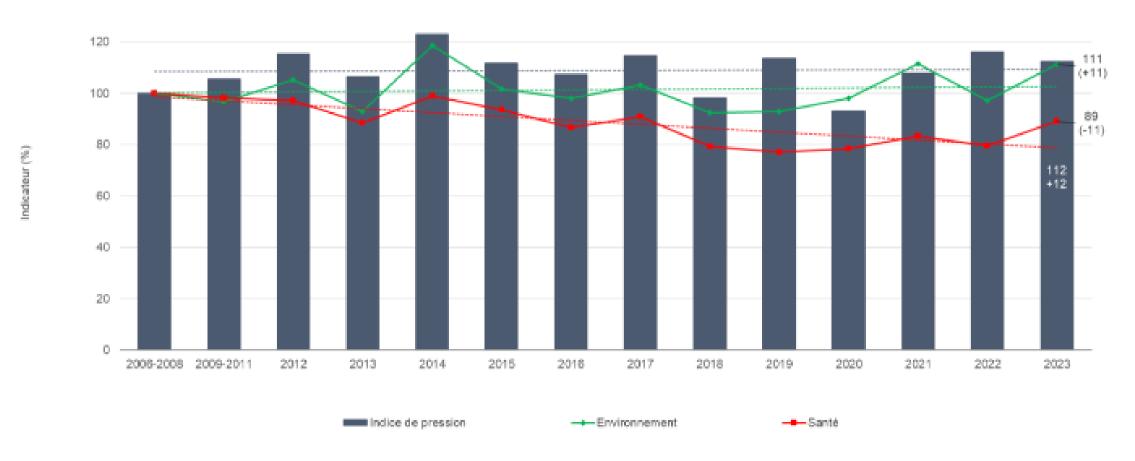
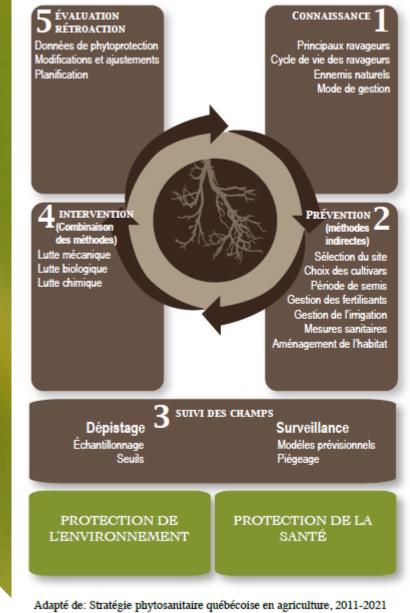
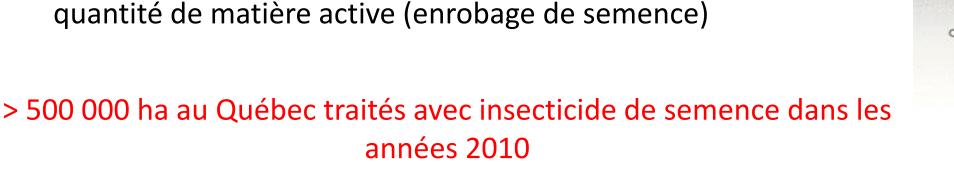



Figure 5. Variation de l'indice de pression, foins exclus, et des indicateurs de risque pour la santé et pour l'environnement, en pourcentage relatif à la période 2006-2008

La lutte intégrée

- 1- Connaissance du ravageur
- 2- Prevention des infestations (méthodes indirectes)
- 3- Dépistage
- 4- Méthode de contrôle quand le seuil d'intervention est atteint (mécanique, biologique, chimique)
- 5- Évaluation de l'évolution de la situation
- Pour la protection de la santé humaine, environnementale et optimisation du rendement



Adapté de: Stratégie phytosanitaire québécoise en agriculture, 2011-2021 Labrie et Voynaud 2012

Les traitements de semences insecticides systémiques

- Insecticides **systémiques (se lient très fortement à l'eau)**, inhibiteurs d'acétylcholinestérase (néonics) ou de pompes à Ca2+ (diamides)
- Certains néonicotinoïdes homologués sur une base temporaire entre 2004 et 2016 au Canada (ARLA corrige en 2016)
- Protection efficace contre les insectes ravageurs de sol et les défoliateurs en début de saison
- Permettent de diminuer l'application d'insecticides foliaires et la quantité de matière active (enrobage de semence)

années 2010

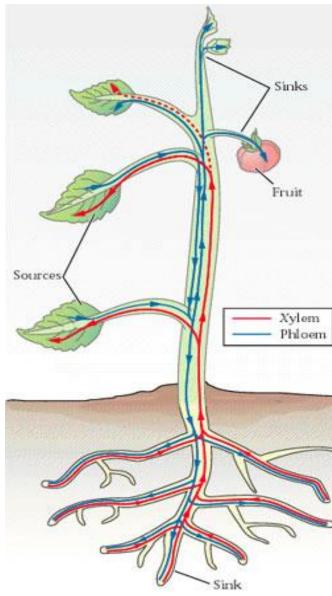


Tableau 2 : Indices de risque pour la santé (IRS) et l'environnement (IRE), et autres caractéristiques environnementales des principales matières actives utilisées en traitements de semences insecticides dans le maïs-grain et fourrager

Nom commercial	Matière active	IRS	IRE	Persistance dans les sols	Mobilité dans les sols	Risque pour les abeilles	Risque pour les invertébrés aquatiques
CRUISER 5FS	Thiaméthoxame*	70	173	Élevée	Élevée	Élevé	Faible
PONCHO 600FS	Clothianidine*	66	211	Élevée	Élevée	Élevé	Faible
NIPSIT INSIDE 600	Clothianidine*	66	211	Élevée	Élevée	Élevé	Faible
GAUCHO 600FL	Imidaclopride*	4	211	Élevée	Élevée	Élevé	Léger
SOMBRERO 600 FS	Imidaclopride*	4	211	Élevée	Élevée	Élevé	l éger
LUMIVIA	Chlorantraniliprole**	3	91	Élevée	Élevée	Faible	Extrêmement élevé
FORTENZA	Cyantraniliprole**	3	73	Modérée	Élevée	Élevé	Extrêmement élevé
FORTENZA ROUGE	Cyantraniliprole**	3	73	Modérée	Élevée	Élevé	Extrêmement élevé
ACCELERON I-374	Tétraniliprole**	54	170	Élevée	Élevée	Élevé	Élevé
REATIS 480 FS	Tétraniliprole**	54	170	Élevée	Élevée	Élevé	Élevé

Néonicotinoïdes

Diamides (nx traitements de semence depuis 2016)

> Ne devraient pas causer de problèmes vu que les produits sont sur la semence

[•] Bulletin d'information Grandes Cultures, No 2, 22 octobre 2021.

Innocuité des traitements de semence insecticides?

Réseau de suivi de la qualité des rivières

Présence de pesticides dans l'eau au Québec : Portrait et tendances dans les zones de mais et de soya - 2018 à 2020

- Suivi à long terme des pesticides pour les régions à soya et maïs
- Échantillonnage de l'eau selon un calendrier fixe
- 2x/semaine de la mi-mai à la mi-août (30 prélèvements)
- Concentration des pesticides
- CVAC (critère de vie aquatique chronique)
 - Concentrations à ne pas dépasser pour protéger les organismes aquatiques. Critère défini pour protéger à court et long terme les organismes d'eau douce et d'eau salée

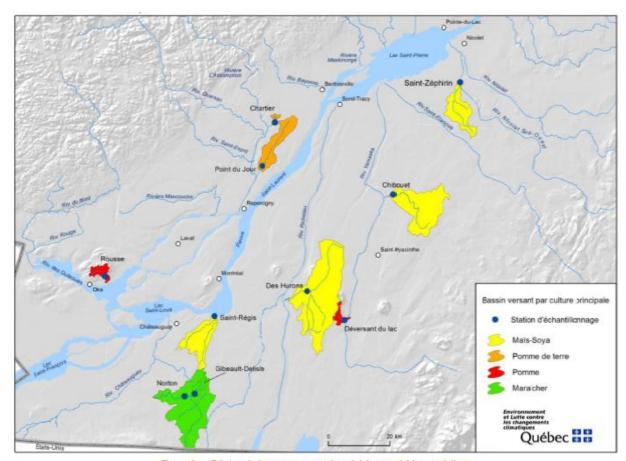


Figure 3. Réseau de base permanent du suivi des pesticides en rivières

Suivi des pesticides dans l'eau au Québec

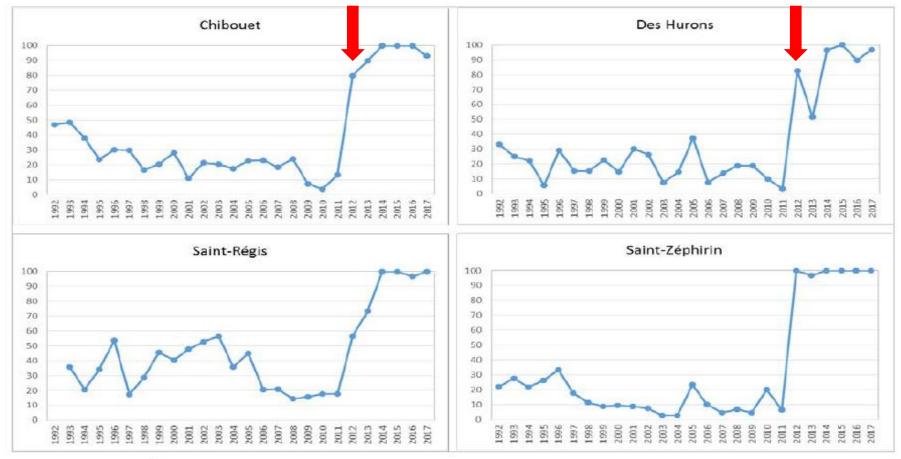


Figure 6 Évolution des tendances des fréquences de dépassement de critères de qualité de l'eau¹

- Réseau de suivi depuis 1992
- Néonicotinoïdes pas inclus car pas dans les pesticides les plus vendus
 - ➤ 2011: inclut les néonics dans le suivi → Explosion du dépassement du critère de qualité de l'eau (CVAC)

Proportion (%) des échantillons prélevés chaque année pour lesquels il y a un ou plusieurs dépassements de critère de qualité de l'eau (CVAC)

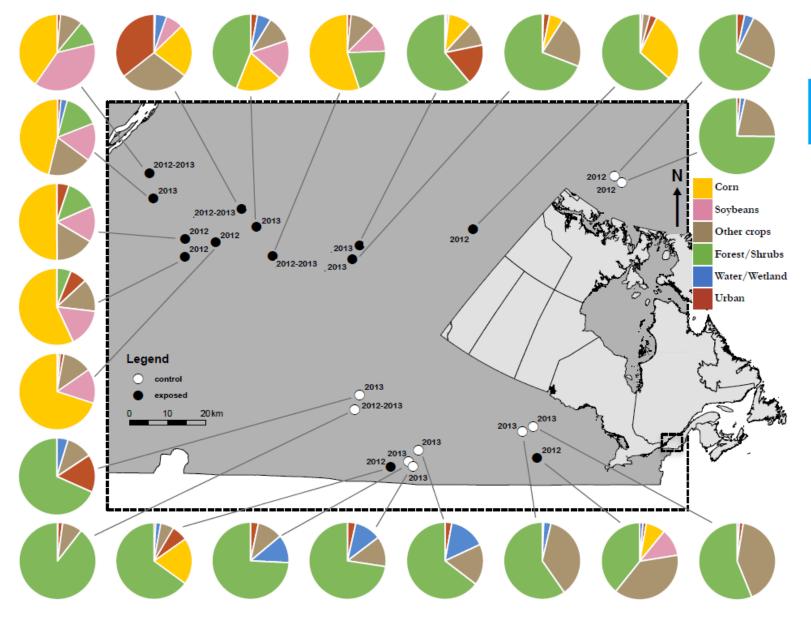



Figure 1 Map of study sites. Study area in Southern Quebec and locations of commercial apiaries in corn-free areas (open circles) or corn-dominated areas (filled circles). Circle charts describe land cover of each site within a 3 km radius.

Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development

Olivier Samson-Robert¹, Geneviève Labrie², Madeleine Chagnon³ and Valérie Fournier¹

PeerJ 5:e3670; DOI 10.7717/peerj.3670

Olivier Samson-Robert M. Sc. ULaval

Centre de recherche en innovation sur les végétaux, Université Laval, Québec, Canada

² Centre de recherche sur les grains Inc., Saint-Mathieu-de-Beloeil, Québec, Canada

³ Département des Sciences Biologiques, Université du Québec à Montreal, Montréal, Québec, Canada

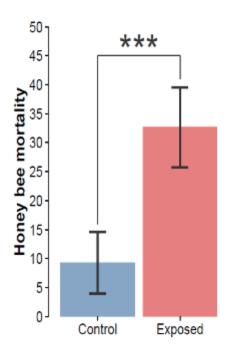


Figure 2 Honey bee mortality index. Mean (\pm CI) number of dead bees collected in front of hives during a 48-hour period over the whole corn planting season ($F_{1,22} = 19.44$; p = 0.0002).

Clothianidine: le seul insecticide > seuil toxicité

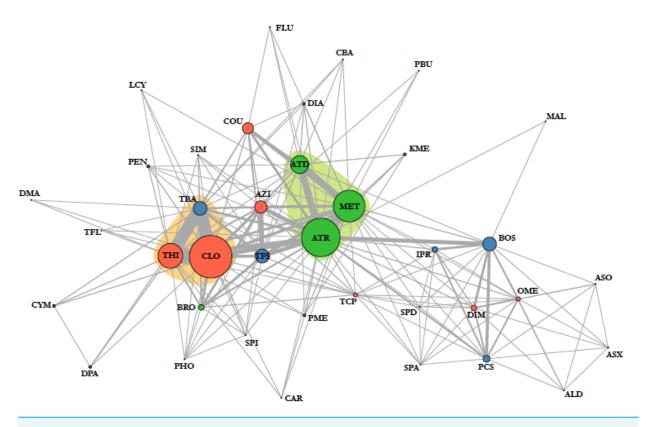


Figure 4 Pesticide detection network highlights the combinations of agrochemicals that were detected in a single sample. The wider the circle, the more frequent this compound was detected; the wider the line, the more frequent the combination was. Insecticides are marked in red, fungicides in blue, herbicides in green and synergist in yellow. Coloured areas indicate most common cocktails of chemicals. ALD, Aldicarb; ASO, Aldicarb sulfone; ASX, Aldicarb sulfoxide, ATR, Atrazine; AZI, Azinphos-methyl; BOS, Boscalid; BRO, Bromoxynil; CAR, Carbaryl; CBA, Carbendazim; CLO, Clothianidin; COU, Coumaphos; CYM, Cymoxanil; DAT, Desethyl atrazine; DIA, Diazinon; DIM, Dimethoate; DMA, Dimethenamid; DPA, Diphenylamine; FLU, Fludioxonil; IPR, Iprodione; KME, Kresoxym methyl; LCY, λ cyhalothrin; MAL, Malathion; MET, Metolachlor; OME, Omethoate; PBU, Piperonyl butoxide; PCS, Pyraclostrobin; PEN, Pendimethalin; PHO, Phosmet; PME, Pyrimethanil; SIM, Simazine; SPA, Spinetoram A; SPD, Spinetoram D; SPI, Spinosad A; TBA, Thiabendazole; TCP, Thiacloprid; TFL, Tau-fluvalinate; TFS, Trifloxystrobin; THI, Thiamethoxam.

Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees

Olivier Samson-Robert¹, Geneviève Labrie², Madeleine Chagnon³, Valérie Fournier¹*

PLOS ONE | DOI:10.1371/journal.pone.0108443 December 1, 2014

Table 1. Pesticide concentrations found in puddle water samples taken from a corn field in 2012 and 2013, when planting was in progress.

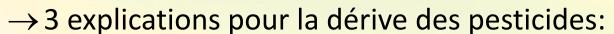
Pesticide	Class*	Detection Samples (N) %			Conco	LOQ [†]			
resticide	Class	Detection	Samples (N)	70		ntrations (μg/		CEM!	LOQ
					Min	Max	Mean [‡]	SEM [‡]	
Atrazine	HERB, S	25	25	100	0.1	7189.0	312.8	1434.6	0.1
<u>Thiabendaz</u> ole	FUNG, S	25	25	100	0.1	5.7	0.6	1.3	0.1
Clothianidin	NEO, S	23	25	92	0.1	55.7	4.6	12.1	0.1
Desethylatrazin	HERB	21	25	84	0.1	705.0	39.5	152.9	0.1
Thiamethoxam	NEO, S	18	25	72	0.1	63.4	7.7	16.7	0.1
Metolachlor	HERB, PS	11	25	44	0.2	10660.0	1401.9	3353.9	0.1
Metalaxyl	FUNG, S	10	25	40	0.1	0.7	0.4	0.2	0.1
Propazine	HERB	7	25	28	0.4	170.7	25.1	64.2	0.1
Spiroxamine	FUNG	5	25	20	0.4	49.5	13.9	20.1	0.1
Mesotrione	HERB	4	25	16	9.7	10681.0	3437.6	5036.5	0.1
Imazethapyr	HERB	3	25	12	0.1	1.6	0.6	8.0	0.1
Boscalid	FUNG, S	2	25	8	0.2	0.8	0.5	0.4	0.1
Dimetachlore	HERB	2	25	8	3.5	7.1	5.3	2.5	0.1
Dimethenamid	HERB	2	25	8	0.1	0.1	0.1	0.0	0.1
Simazine	HERB, S	2	25	8	1.3	40.7	21.0	27.9	0.1
Benoxacor	HEBR	1	25	4	6.1	6.1	6.1	NA	0.1
Bentazone	HERB	1	25	4	1.5	1.5	1.5	NA	0.1
Chlorimuron-ethyle	HERB	1	25	4	0.4	0.4	0.4	NA	0.1
Metobromuron	HERB	1	25	4	1.5	1.5	1.5	NA	0.1
Nicosulfuron	HERB, S	1	25	4	8.4	8.4	8.4	NA	0.1
Picoxystrobin	FUNG	1	25	4	2.5	2.5	2.5	NA	0.1
Rimsulfuron	HERB	1	25	4	6.0	6.0	6.0	NA	0.1

^{*} Class: FUNG = fungicide, HERB = herbicide, NEO = neonicotinoid, PS = partially systemic, S= systemic.

 Nouvelle voie d'exposition non évaluée dans les risques à l'environnement = flaques d'eau

[†]LOQ = limit of quantification (μg/L).

^{*}Mean and SEM for detections> LOQ.

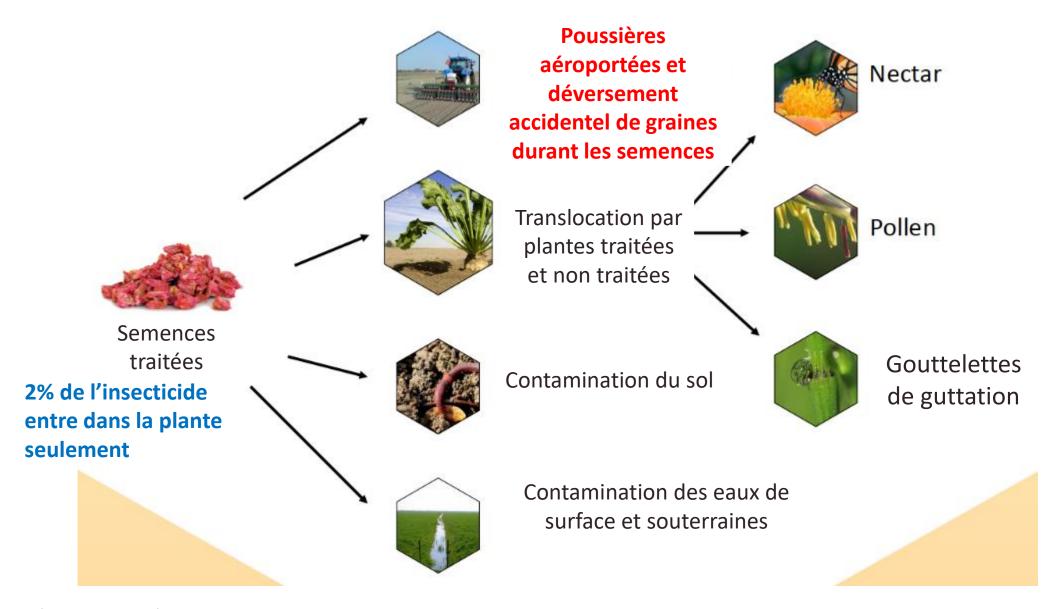

Sources de contamination des écosystèmes par les traitements de semence insecticide

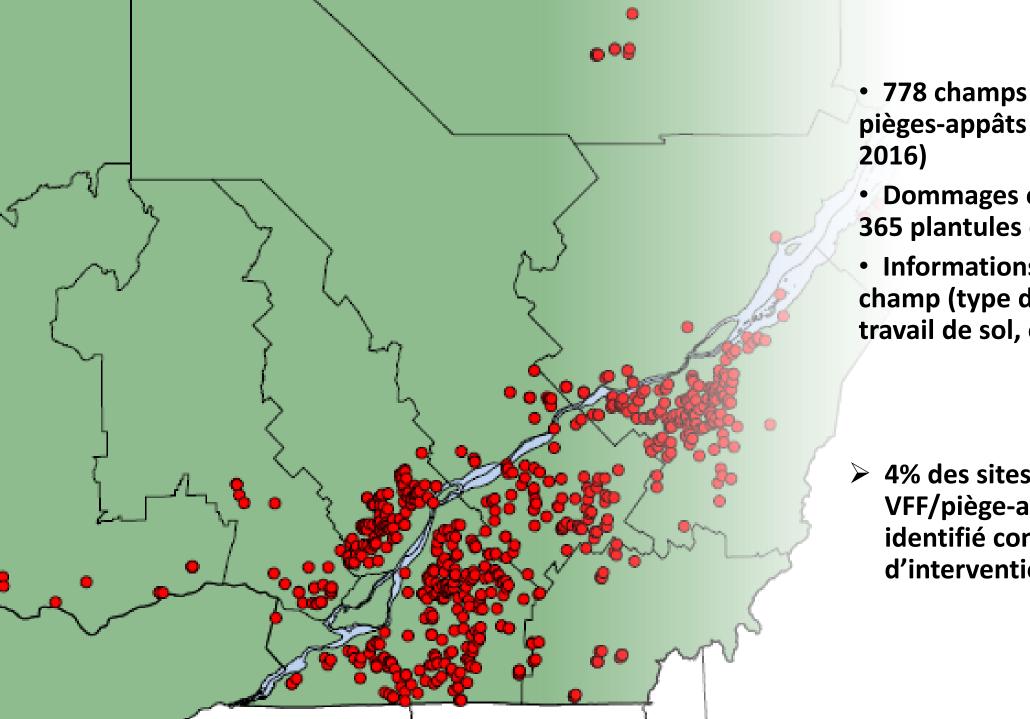
→ Néonicotinoides retrouvés dans le sol avant le semis; dans la neige, réserves naturelles...

Received: 12 June 2017 Revised: 27 July 2017 Accepted article published: 8 August 2017 Published online in Wiley Online Library: (wileyonlinelibrary.com) DOI 10.1002/ps.4696

The role of field dust in pesticide drift when pesticide-treated maize seeds are planted with vacuum-type planters

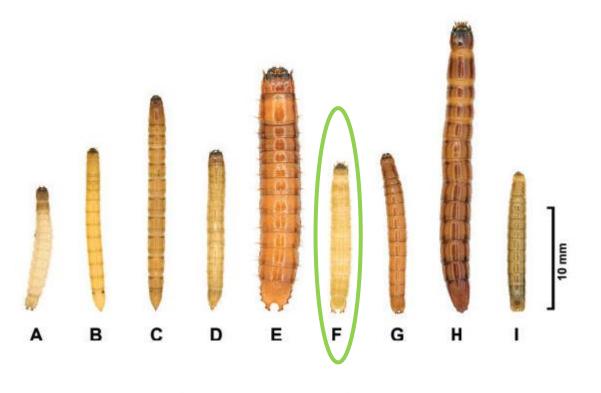
Arthur W Schaafsma,* Victor Limay-Rios and Luis G Forero

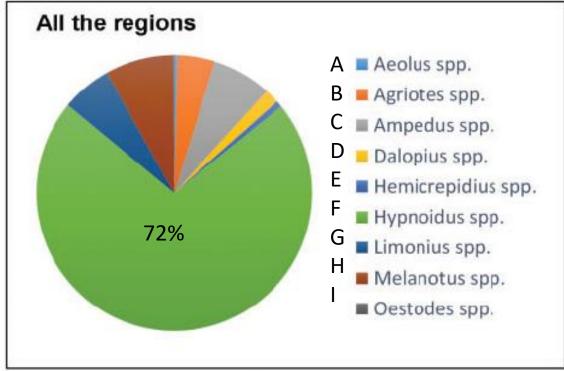

- → Abrasion par le talc ajouté comme lubrifiant
- → Abrasion durant la manutention, distribution et semis
- → Poussières de sol durant le semis qui entrent dans la prise d'air du semoir.


Figure 1. Kinze (Kearney Canada) vacuum planter showing exhaust location and dust collection device (top inset).

Voies d'exposition chroniques et aiguës pour les espèces non - ciblées

Est-ce que les traitements de semences insecticides sont nécessaires?

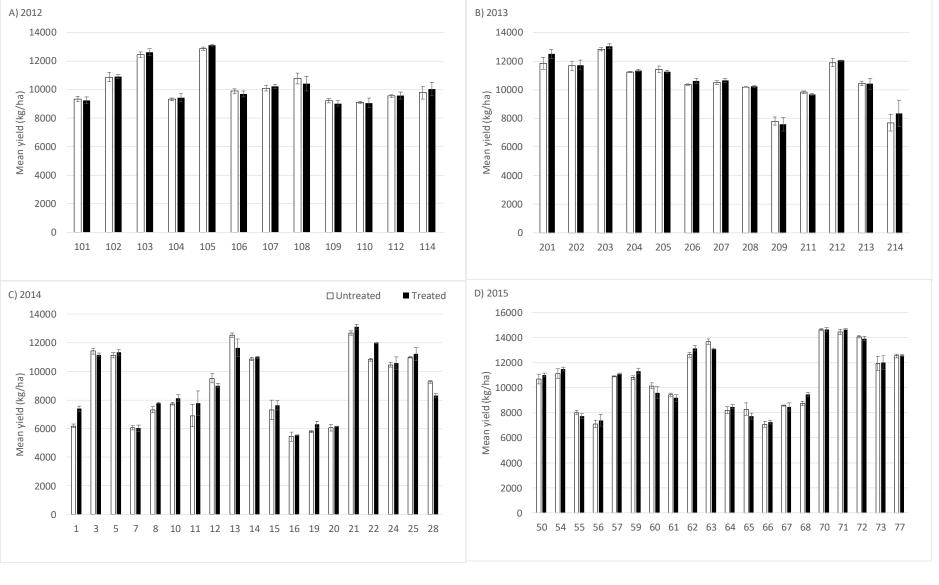



- 778 champs dépistés (17 395 pièges-appâts entre 2011 et
- Dommages évalués sur 37 365 plantules de maïs en 2016
- Informations sur chaque champ (type de sol, précédent, travail de sol, etc.)

> 4% des sites avec > 3 VFF/piège-appât (seuil identifié comme seuil d'intervention)

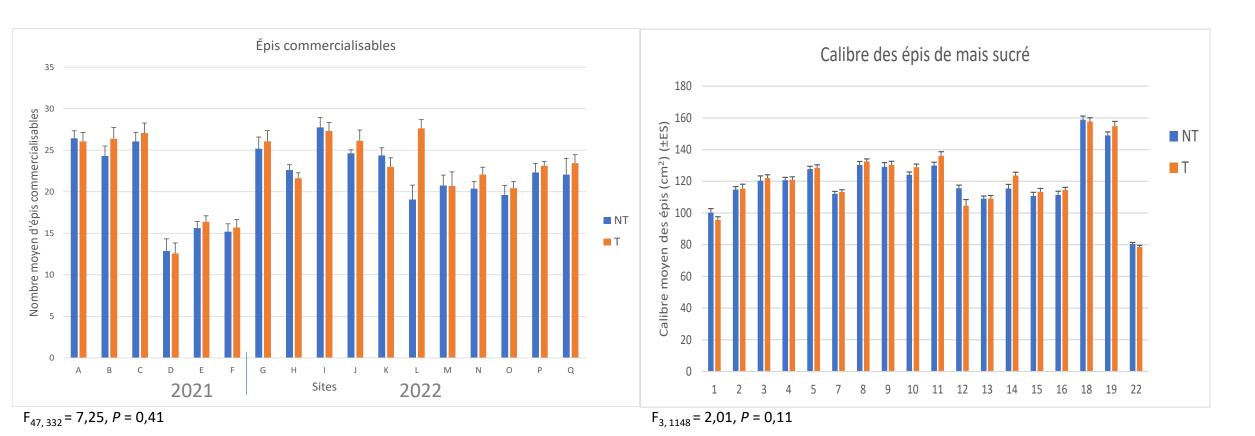
Wireworm in Quebec Field Crops: Specific Community Composition in North America

J. Saguez,^{1,2} A. Latraverse,¹ J. De Almeida,¹ W. G. van Herk,³ R. S. Vernon,³ J-P. Légaré,⁴ J. Moisan-De Serres,⁴ M. Fréchette,⁴ and G. Labrie¹



616 sites (2011 – 2015); 13 859 pièges appâts

* Réseau de surveillance des vers fil-de-fer


Étude sur les rendements de maïs et soya au Québec

- 68 sites de maïs,16 de soya
- 1.5 ha chaque essai
- 3 réplicats de bandes traitées et non traités avec des néonicotinoïdes
- 4 ans (2012-2015)
- 0,5% différences (NS)
- 4/68 maïs avec > 3
 VFF/piège
- Aucune différence dans le soya

Labrie et al. 2020, Plos One 15(2): e0229136

Nouvelle étude dans le mais sucré au Québec

- >Abondance des ravageurs des semis 3x plus élevée qu'en grandes cultures
- > Aucune différence significative pour le rendement ou le calibre des épis sur 24 sites

Efficacité et utilité des TSI

Journal of Economic Entomology, 111(2), 2018, 689-699 Advance Access Publication Date: 29 January 2018

Field and Forage Crops

A Meta-analysis and Economic Evaluation of **Neonicotinoid Seed Treatments and Other Prophylactic** Insecticides in Indiana Maize From 2000–2015 With IPM Recommendations

A. M. Alford^{1,2} and C. H. Krupke¹

J. Entomol. Soc. Brit. Columbia 115, December 2018

Efficacy of diamide, neonicotinoid, pyrethroid, and phenyl pyrazole insecticide seed treatments for controlling the sugar beet wireworm, Limonius californicus (Coleoptera: Elateridae), in spring wheat

W.G. VAN HERK¹, T.J. LABUN², AND R.S. VERNON³

- > Pas d'effets sur les rendements
- ▶ Pas de réduction de population de VFF

www.nature.com/scientificreports

OPEN Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers

86

ember 2019

Spyridon Mourtzinis¹, Christian H. Krupke², Paul D. Esker ³, Adam Varenhorst⁴, Nicholas J. Arneson¹, Carl A. Bradley 6, Adam M. Byrne⁷, Martin I. Chilvers⁷, Loren J. Giesler⁵, Ames Herbert⁸, Yuba R. Kandel⁹, Maciej J. Kazula¹⁰, Catherine Hunt⁹, Laura E. Lindsey¹¹, Sean Malone⁸, Daren S. Mueller⁹, Seth Naeve¹⁰, Emerson Nafziger¹², Dominic D. Reisig¹³, William J. Ross¹⁴, Devon R. Rossman⁷, Sally Taylor⁸ & Shawn P. Conley¹

Obstacles

ACCUEIL INFO ENVIRONNEMENT AGRICULTURE

Les scientifiques au cœur de l'affaire Louis Robert publient leur étude controversée

Les pressions subies par les chercheurs sont l'objet d'une enquête en cours de la protectrice du citoyen du Québec.

- Ingérence dans la recherche publique
- Pressions
- Interdiction de publications scientifiques

O PLOS ONE

RESEARCH ARTICLE

Impacts of neonicotinoid seed treatments on soil-dwelling pest populations and agronomic parameters in corn and soybean in Quebec (Canada)

Geneviève Labrie o 1 a ÷, Annie-Ève Gagnon a b, Anne Vanasse Alexis Latraverse Gilles Tremblav co

Pesticides: les recommandations de la commission dévoilées

PHOTO MARTIN TREMBLAY, ARCHIVES LA PRESSE

19 février 2020

https://www.lapresse.ca/actualites/environnement/2020-02-19/pesticides-les-recommandations-de-la-commission-devoilees

- 700 mémoires reçus par la CAPERN
- 26 groupes entendus
- 32 recommandations
 - Santé humaine (résidus aliments et étude épidémiologique)
 - Faire respecter les bandes riveraines
 - Inscrire d'autres pesticides dans les pesticides à usage restreint

Le Protecteur du citoyen donne raison à Louis Robert sur le fond de

l'affaire

Des enquêtes confirment des dénonciations faites par le lanceur d'alerte envers le MAPAQ et un organisme.

Publié le 21 septembre à 12 h 31 HNE

Thomas Gerbet

https://ici.radiocanada.ca/nouvelle/2011952/pr otecteur-citoyen-rapport-louisrobert

Rapport du Protecteur du citoyen

« Cas grave de mauvaise gestion au MAPAQ »

https://www.lapresse.ca/actualit es/2023-09-21/rapport-duprotecteur-du-citoyen/casgrave-de-mauvaise-gestion-aumapaq.php

Constats?

https://cerom.qc.ca/vffqc/

Justification agronomique obligatoire

RÈGLEMENT MODIFIANT LE CODE DE GESTION DES PESTICIDES
RÈGLEMENT MODIFIANT LE RÈGLEMENT SUR LES PERMIS ET LES CERTIFICATS POUR LA VENTE ET L'UTILISATION DES PESTICIDES

NOUVELLES RESPONSABILITÉS POUR LES AGRONOMES

(Mise à jour septembre 2018)

JUSTIFICATION AGRONOMIQUE

L'agronome pose un nouvel acte :

l'élaboration d'une justification agronomique, destinée à l'agriculteur, pour l'application à des fins agricoles des pesticides les plus à risque ou pour la mise en terre des pesticides de la classe 3A. Ces travaux doivent obligatoirement être exécutés en respectant les conditions mentionnées dans la justification agronomique.

Pesticides de la classe 3A

Néonicotinoïdes (clothianidine, imidaclopride ou thiaméthoxame) enrobant les semences de ces cultures :

- avoine
- maïs-grain

blé

- maïs sucré
- canola
- orge
- maïs fourrager
- soya

Sans justification agronomique, il est interdit à l'agriculteur d'effectuer ou de faire exécuter l'application de ces pesticides. L'entrée en vigueur de cette exigence s'étalera selon le calendrier suivant.

Justification agronomique de certains pesticides

- Justification établie en 2017 sur trois critères:
 - IRE et IRS élevés (16 pesticides)
 - 2. Impacts sur les pollinisateurs (néonicotinoïdes)
 - 3. Contribution à l'IRPEQ (seuil de 5% seulement Atrazine et Chlorpyrifos)

IRPEQ = indicateurs de risques liés à la santé et à l'environnement

IRS (Santé): toxicité aigue ou chronique (cancérogénécité, effets sur le développement)
IRE (Environnement) (pollinisateurs, oiseaux, poissons, persistance dans le sol et potentiel de lessivage)

- 5 pesticides répondaient à 1-2 ou 1-3:
 - Atrazine (herbicide)
 - Chlorpyrifos (insecticide organophosphoré)
 - Imidaclopride, Clothianidine et Thiaméthoxame (insecticides néonicotinoïdes)

Justification agronomique de certains pesticides

Tableau 5. Les ventes au détail des cinq pesticides visés par la justification et la prescription agronomiques

Ingrédient actif visé par une	Ventes au détail (kg i.a.)									
prescription agronomique	2018	2019	2020	2021	2022	2023				
Atrazine	35 797	19 862	5 579	5 098	2 838	3 027				
Chlorpyrifos	_	5 943	5 558	4 047	1 714	615				
Clothianidine										
Application foliaire	-	2 030	1 543	945	807	78				
Enrobant les semences	-	378	151	159	196	25				
Thiaméthoxame										
Application foliaire	_	774	1 260	1 064	956	1 295				
Enrobant les semences	_	248	14	8	6	175				
Imidaclopride										
Application foliaire	-	231	101	182	174	43				
Enrobant les semences	-	0	0	0	0	0				
TOTAL	35 797	29 466	14 206	11 503	6 691	5 258				

- ↓ 82% depuis 2018
- Constat: Oui, ça semble fonctionner

Proportion des semences de maïs avec néonicotinoïdes en 2019

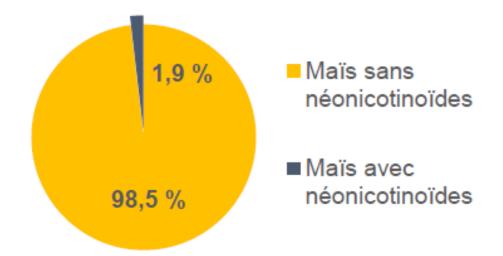


Figure 11. Proportion estimée des superficies ensemencées de maïs enrobés de néonicotinoïdes par rapport à la superficie totale en 2019

- 238 154 kg semences avec néonicotinoides (= 566 kg i.a.)
- Maïs (fourrager, grain, sucré) = 390 kg i.a.
- 2015 = 100%
- 2019 = 2% grains enrobés avec néonics
- 2023: 0,003% des grains enrobés avec néonics

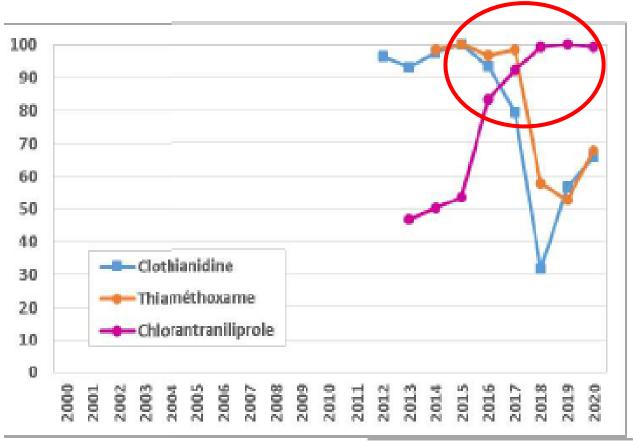


Figure 5. Tendances des fréquences (%) de détection pour quelques pesticides

➤ Réduction des néonicotinoïdes MAIS augmentation exponentielle du chlorantraniliprole (nouveau traitement de semence)

ANNEXE 8. ÎNGRÉDIENTS ACTIFS DONT AU MOINS UN DES SEUILS LIÉS AUX CRITÈRES DE TOXICITÉ POUR LA SANTÉ ET POUR L'ENVIRONNEMENT EST DÉPASSÉ QUI SONT LES PLUS VENDUS DANS LE SECTEUR AGRICOLE

Ingrédient actif	Type de produit	Critère		Quantité 2018	Quantité 2019	Quantité 2020	Quantité 2021	Quantité 2022	Quantité 2023
nigiculant acui	Type de produit	Santé	Environnement	(kg i.a.)					
Mancozèbe	Fongicide	Х	Х	259 421	237 516	240 753	229 012	221 488	220 689
Chloropicrine	Stérilisant de sol	Х	X	72 620	149 526	119 263	114 494	183 768	198 463
Glyphosate (sels d'amine)1	Herbicide		X	784 431	689 002	453 119	407 241	403 709	196 405
Métam-sodium	Stérilisant de sol	Х		162 960	153 907	159 484	178 242	163 304	105 408
MCPA (ester)	Herbicide		X	32 047	34 701	38 038	43 736	28 405	40 953
Mésotrione	Herbicide	Х		17 905	17 782	25 805	24 411	27 510	32 945
Linuron	Herbicide	X	X	23 131	22 502	27 370	29 741	20 587	28 926
Chlorothalonil	Fongicide	Х	Х	64 263	40 107	26 831	15 588	38 923	26 894
Diméthénamide-P	Herbicide		X	18 997	30 091	25 095	17 704	20 682	22 034
Bentazone	Herbicide	Х		11 045	18 946	18 429	24 088	10 950	21 623
Captane	Fongicide	X	X	46 056	40 174	20 194	15 113	21 885	21 250
Pendiméthaline	Herbicide		X	20 106	18 351	12 543	12 521	12 636	16 057
Bromoxynil (ester)	Herbicide	X	X	16 777	20 013	16 468	17 205	10 378	13 981
Prothioconazole	Fongicide	X	X	10 959	9 947	8 276	11 600	10 685	9 959
Azoxystrobine	Fongicide		X	9 781	7 109	7 159	8 195	9 592	9 822
Glyphosate (sel de diammonium)1	Herbicide		X	9 431	13 759	7 805	6 474	7 284	9 282
Acifluorfène	Herbicide	X		2 046	2 455	4 649	6 059	1 619	8 514
Peroxyde d'hydrogène*	Fongicido	X		56	1 390	1 160	2 364	4 3 3 0	8 330
Cyantraniliprole	Insecticide		X	2 668	5 755	3 105	5 627	2 723	7 835
Boscalide	Fongicide		Х	5 431	4 000	3 6/0	6 581	6 605	/ 101
Carbaryl	Insecticide	X	X	5 301	5 595	5 712	5 064	5 063	6 638
Propiconazole	Fongicide	Х	X	5 697	2 322	3 076	3 827	4 963	6 351
MCPB (sel de sodium)	Herbicide		X	11 184	7 290	6 491	4 517	6 015	5 779
Pydiflumétofène	Fongicide		X	0	201	2 866	2 497	5 082	5 313
Picoxystrobine	Fongicide	X	X	0	98	514	4 558	4 608	5 262
Phosmet	Insecticide	X	X	10 133	8 518	8 422	7 693	5 119	5 050
Folpet	Fongicide	X	X	944	571	1 280	1 280	1 296	5 019
Autres (191)	S. O.	S. O.	S. O.	224 597	221 476	118 732	133 909	109 738	106 275
TOTAL				1 827 987	1 763 103	1 366 318	1 339 341	1 348 956	1 152 167

diamide

¹ Le glyphosate, selon les formes chimiques employées dans la composition d'un produit, peut présenter des toxicités différentes. Parmi les différentes formes chimiques existantes, la plus vendue depuis 2005, soit le sel de potassium, est la seule qui ne figure pas dans le tableau.

On peut consulter la méthodologie pour en savoir plus sur l'attribution des seuils.

Modification proposée au Code de gestion des pesticides

Pour assurer une meilleure protection de la vie aquatique et des abeilles, les semences enrobées d'insecticides de la famille des diamides seraient visées par la justification et la prescription agronomiques déjà applicables pour les semences enrobées de néonicotinoïdes. La mise en terre des semences enrobées de fongicides (classe 3B) serait également encadrée.

Bonjour

L'Ordre a tout récemment reçu une missive de la part du Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs.

Voici l'information qui nous a été communiquée :

Le MELCCFP confirme sa volonté d'accorder un délai pour la vente et la mise en terre de semences enrobées de pesticides afin de bien opérationnaliser la saison des semis 2025.

Ainsi, le Ministère permettra, du 1er janvier au 1er août 2025 :

- la vente de semences enrobées de pesticides à un agriculteur:
 - sans que celui-ci ne soit titulaire d'un certificat;
 - sans qu'il ne fournisse une prescription, le cas échéant.
- la mise en terre de semences enrobées de pesticides par un agriculteur:
 - sans que celui-ci ne soit titulaire d'un certificat d'agriculteur;
 - sans qu'il n'obtienne le document agronomique exigé à l'article 74.1 du Code de gestior des pesticides, le cas échéant.

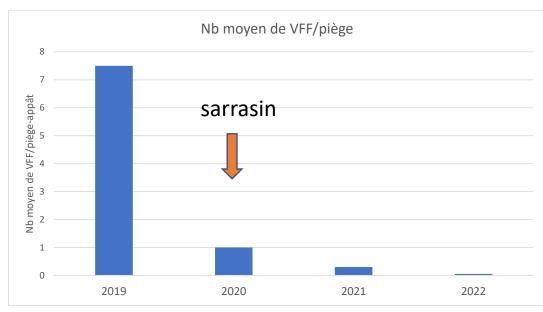
Toutefois, toutes les exigences concernant les semences enrobées des néonicotinoïdes (clothianidine, imidaclopride ou thiaméthoxame) demeurent applicables.

L'Ordre tient à mentionner qu'il nous a été précisé qu'une annonce de la part du Ministère est prévue vers la mi-novembre.

Si vous avez des questions, nous vous prions de les transmettre directement au Ministère.

Report de la mise en place de la nouvelle règlementation

Constats – Traitements de semence insecticide


- Contamination massive de l'environnement (Giroux et al. 2022; Chrétien et al. 2017) et impacts sur les pollinisateurs (Samson-Robert et al. 2014, 2017a, 2017b).
- Projets de recherche qui ont coûté près de 1,5M\$ au gouvernement québécois
- Démonstration de leur inutilité sur près de 95% des champs testés (Labrie et al. 2020; RAP Grandes Cultures 2021)
 - > Justification obligatoire d'un agronome pour utiliser des néonicotinoïdes au Québec
- Remplacement visible par d'autres insecticides de semence, malgré la démonstration de leur inutilité sur la majorité des champs

Défis pour la reduction de l'utilisation de pesticides

- Perception de la lutte intégrée Agit sur l'adoption des méthodes alternatives
 - Étude de Gale West en grandes cultures (2013)
 - Pas de compréhension commune de la lutte intégrée
 - Peu de confiance dans les résultats de recherche
 - Besoin d'incitatifs financiers pour adopter les alternatives
- Disponibilité de méthodes alternatives
 - Financement \$
 - Temps pour développer une nouvelle méthode efficace
 - Temps pour l'adoption

Disponibilité de méthodes de lutte alternatives

Méthode de piégeage de masse avec phéromones attractives (van herk et al. 2023)▶650\$/ha

Labrie et al. en cours

- ➤ Diminution de 92% des VFF avec l'utilisation du sarrasin en 2020
- ➤ ↑ du rendement de 60% entre 2019 et 2022
- Difficultés à intégrer la méthode chez les producteurs
 - > Problème de résiduel d'herbicides
 - > Problème de rotations
 - ➤ Devient plante adventice et problème de gestion

Défis pour la réduction des risques liés aux pesticides

- Nouveaux pesticides de remplacement
- Nouveaux types de fonctionnement : pesticides systémiques, ARNi
- Processus d'homologation des pesticides et OGM
 - Ajustements pour les nouveaux modes de fonctionnement?

Pesticides: démission « révélatrice » d'un scientifique nommé par Ottawa

Publié le 18 juillet à 4 h 00 HNE

2023

Le professeur pense que le gouvernement fédéral donne « un faux sentiment de sécurité » aux Canadiens.

Le professeur en sciences de la santé Bruce Lanphear avait été choisi par le gouvernement canadien pour coprésider un comité d'experts scientifiques au sujet des pesticides.

En entrevue, une cadre de Santé Canada nous avait expliqué que les compagnies de pesticides « nous donnent des données scientifiques, on les évalue, puis on propose des limites maximales de résidus à la suite de cette évaluation ». Une affirmation qui n'avait pas rassuré tout le monde.

«le chercheur en santé environnementale des enfants Bruce Lanphear dénonce le manque de transparence du gouvernement fédéral, l'influence de l'industrie agrochimique et les failles du système d'autorisation des pesticides au Canada.»

Exclusive: How a federal agency colluded with a pesticide maker to silence a Canadian researcher

CONCLUSION

- Traitements de semence insecticides = cas qui démontre bien l'ensemble des problématiques liées aux pesticides:
 - Processus d'homologation
 - Fardeau de la preuve de l'innocuité sur la recherche indépendante
 - Multiples intérêts
 - Confiance des producteurs agricoles dans la recherche scientifique
 - Disponibilité de méthodes alternatives simples et peu coûteuses

Remerciements

Les membres du groupe de travail du RAP sur les ravageurs des semis et des cultures maraîchères.

Les responsables régionaux en phytoprotection du MAPAQ.

Clubs-conseils en agroenvironnement

Chercheurs impliqués dans les projets. G. Tremblay, A. Vanasse, S. Rioux, A.-È. Gagnon, J. Brodeur, É. Lucas, P. Legendre, D. Borcard, Jade Savage (U. Bishop), Anne-Marie Fortier (Phytodata)

L'équipe d'entomologie du CÉROM et du CRAM.

Nombreux étudiants d'été et ouvriers du CÉROM et du CRAM

Les associations: APMQ, FQPFLT

Ces projets ont été réalisés en vertu du sous-volet 3.2 du programme Prime-Vert 2013-2018 et 2018-2023 et il a bénéficié d'une aide financière du ministère de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ) par l'entremise de la Stratégie phytosanitaire québécoise en agriculture (SPQA) 2011-2021.

Stratégie

phytosanitaire québécoise en agriculture

La science et l'art!

Sculpture de Richard Ibghy et Marilou Lemmens, intitulée *L'Affaire Louis Robert*

- https://www.ibghylemmens.com /laffairelouisrobert.html
- Est intégrée dans la collection permanente du Musée des Beaux-Arts de Québec (exposée à différents endroits)

