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Abstract
A complete understanding of factors that influence animal fitness requires that we measure not only those occurring day to 
day in the life of an animal but also those that operate on longer time scales. Here, we investigated silver spoon effects (fitness 
impacts resulting from conditions faced early in life) and carryover effects (fitness impacts caused by environmental factors in 
a previous season) in a northern Wisconsin population of the common loon (Gavia immer). The mass of a loon chick divided 
by its age, an indication of food it received from its parents in its first 4 to 6 weeks of life (“chick condition”), affected both 
the likelihood of survival to adulthood and, among territory settlers, the number of chicks it fledged as an adult. Only one 
carryover effect was evident: increased ocean pH on the wintering ground had a modest positive effect on territory settlement 
rate. However, cohorts of loons that faced unfavorable ocean conditions in their first year yielded adults that fledged many 
chicks, which suggests that selection resulting from poor ocean conditions removed weaker phenotypes. The robust silver 
spoon effect in this species helps us understand a current and alarming pattern in the Wisconsin loon population: the sharp 
decline in the survival of chicks to breeding age.
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Introduction

Ecologists have known for some time that environmental 
conditions encountered by long-lived animals during one 
phase of life can affect their fitness profoundly in another 
(Greenberg and Marra 2005). In the wake of this realiza-
tion, a holistic view of the lives of animals has begun to take 
hold: we cannot understand long-lived animals fully without 
considering multiple phases of the life history (Cooper et al. 
2024).

Of course, the new, more expansive view of animal life 
histories presents daunting challenges. If we must track ani-
mals’ fitness across multiple life-history stages, we must also 

increase the scope of our research to encompass those stages. 
In addition, since many species move from one geographic 
area to another between seasons, we must, in some cases, 
study environments that are separated by several months 
and hundreds or thousands of kilometers. Fortunately, sta-
ble isotopes, telemetry, geolocators, or mere resightings of 
marked animals have permitted ecologists to link conditions 
that animals face during one season with fitness outcomes in 
later one (Ouwehand et al. 2016; Imlay et al. 2019; Cooper 
et al. 2024).

One pattern by which fitness impacts can span multiple 
life-history stages is the carryover effect. A carryover effect 
occurs when ecological conditions that an animal experi-
ences in one life-history stage (such as the nonbreeding sea-
son) enhance or reduce its fitness during a subsequent stage 
(typically the breeding season; Harrison et al. 2011; Cooper 
et al. 2024). To date, difficulties following animals across 
seasons have limited the description of carryover effects to 
a handful of species (Harrison et al. 2011). A second cross-
stage pattern, the “silver spoon effect”, occurs when indi-
viduals experience favorable conditions (e.g., more or higher 
quality food) in their first weeks or months of life relative 
to others raised in the same year or cohort and enjoy high 
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fitness later in life (e.g., higher adult survival or breeding 
success) as a consequence (Grafen 1988; Van De Pol et al. 
2006; Descamps et al. 2008; Hamel et al. 2009; Ancona 
and Drummond 2013; Mainwaring et al. 2023). Silver spoon 
effects have been found widely in animals (Albon et al. 
1992; Vasilieva and Tchabovsky 2020; Sanghvi et al. 2021; 
Berzins et al. 2024).

Although most research on lagged effects such as car-
ryover and silver spoon focuses on their impact at the level 
of the individual, both patterns influence population dynam-
ics as well (Lindström 1999; Harrison et al. 2011; Berzins 
et al. 2024). Indeed, the potential impacts of lagged fitness 
effects on population dynamics constitute a new frontier in 
animal ecology.

We looked for impacts of lagged fitness effects on a popu-
lation of common loons (Gavia immer) in northern Wiscon-
sin that has been under continuous study since 1993. Com-
mon loons (hereafter “loons”) are large piscivorous diving 
birds well known for their nocturnal vocalizations. Routine 
capture and weighing of loons as chicks provided an oppor-
tunity to investigate possible silver spoon effects, because 
many banded chicks return as adults to the study area, settle 
on territories, and breed (Piper et al. 2012). Banding recov-
eries together with an investigation using satellite transmit-
ters and geolocators have revealed that 80% of Wisconsin 
loons winter along Florida’s Gulf Coast (Kenow et al. 2021), 
which has made it possible to investigate carryover effects 
from winter to summer using long-term measurement of 
ocean attributes from that region.

We had an additional motive in looking for lagged effects 
on fitness in common loons. The loon population in northern 
Wisconsin has suffered a substantial decline, including an 
alarming increase in mortality of young adults (Piper et al. 
2020). We sought to learn whether the massive die-off of 
young adults might result from a silver spoon effect, carryo-
ver effect(s) related to habitat degradation on the wintering 
grounds, or some combination of these factors.

Methods

Study area and study animal

From 1993 to 2024, we studied marked loons within a clus-
ter of breeding territories covering an area of 2400 km2 
in Oneida, Vilas, and Lincoln counties, Wisconsin (geo-
graphic center of study area: 45.7077° N, − 89.5930 W). 
Loon territories in this region comprise either entire small 
lakes (N = 130; mean size ± SD = 42 ± 34 ha), or portions of 
large lakes (N = 54 territories on 24 different lakes; mean 
size ± SD = 387 ± 403 ha). Agricultural activity is minimal 
in our study area, and most lakes with loons are bordered 
by hardwood and coniferous forest. Still, most study lakes 

have highly developed shorelines and experience constant 
recreational activity in the form of boating, angling, and 
swimming.

Adult loons show high site fidelity, tending to return 
to the same breeding territory year after year (Piper et al. 
2023). Maintaining possession of a territory requires vigi-
lance and active defense, however. Young adults (roughly 
2 to 6 years of age) intrude constantly into breeding ter-
ritories (Piper et al. 2006), preferring to settle on lakes of 
similar size and pH to their natal one (Piper et al. 2013). 
Settlement by young loons occurs by one of three means: 
1) replacement of a dead pair member, 2) eviction of an 
existing pair member and pair formation with the mate of 
the displaced bird, or 3) founding of a new territory with 
a new mate (Piper et al. 2000). Territories that produced 
chicks the previous year are especially prone to intrusions 
and evictions, because loons use the presence of chicks as a 
cue indicating territory quality (Piper et al. 2006).

Loon chicks are semiprecocial and begin to take short 
dives within a few days of hatching. However, almost 100% 
of their food comes from parents through 5 weeks; by 8 
weeks, they capture about 50% of their own food (Paruk 
et al. 2021). At 11 weeks, they provide 90% of their own 
food and have learned to fly (Paruk et al. 2021). During 
October and early November of their first year, most juve-
niles leave their natal lake and forage on others nearby that 
are: 1) of similar pH to their natal lake or 2) large and con-
tain abundant food (Hoover et al. 2021).

Based on satellite tracking of juveniles (Kenow et al. 
2021), we can now describe the fall migration of juveniles 
as follows. By mid-November, most juveniles have left 
the vicinity of their natal lakes and begun to travel south 
and east. They make brief stops on Lake Michigan; lakes 
in Iowa, Illinois, Indiana, Ohio or Missouri; and/or reser-
voirs in the southeastern U.S., before reaching the wintering 
grounds in the latter half of November.

Young loons from the Wisconsin population do not return 
to the breeding area until they reach 2 to 3 years of age 
(Piper et al. 2015). Instead, 1- and 2-year-olds spend their 
summers on the Atlantic coast, venturing as far north as the 
Canadian Maritime provinces (Kenow et al. 2021).

Capture and sexing of chicks

We caught adult loons and their chicks of about 5 weeks 
(mean age 34.4 ± 6.6 d SD; N = 1109) by spotlighting and 
netting at night from a 4 m motorboat (Evers 1993). We 
transported captured loons to shore and weighed them with 
a digital scale (± 10 g; Brecknell SA3N340 ElectroSamson, 
Fairmont, Minnesota, USA). We then fitted adults and chicks 
4 weeks and older with a numbered United States Geologi-
cal Survey (USGS) band and three colored plastic leg bands 
(Gravoglas 2-plex; Gravotech, Duluth, Georgia, USA) in a 
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unique combination. Following banding and weighing, fam-
ily members were released together in their territories.

We determined the sex of 794 of 1109 total chicks in our 
sample. Of these, 613 were sexed through genetic analy-
sis by a collaborator (A. McMillan, Buffalo State Univ; see 
Itoh et al. 2001), 128 by observing their behavior when they 
intruded into or settled on territories (180 loons), and 53 by 
both means. However, among chicks banded between 1993 
and 2007, sex was only determined for those that returned 
as adults.

Field observations

Following an initial visit in late April or early May during 
which we identified the breeding pair from leg bands, we 
made 60 min visits at no longer than 8-day intervals from 
early May through August 10 between 0500 and 1300 to 
each breeding territory. The number of breeding territories 
under study increased from 12 in 1993 to a mean of 56.5 
from 1994 to 2004, 90.1 from 2005 to 2014, and 106.7 from 
2015 to 2024. On each visit, we determined whether the pair 
was: 1) not breeding, 2) incubating eggs, or 3) raising chicks. 
We estimated the hatching date by interpolating between the 
first visit to a territory on which the pair was still incubating 
and the first visit on which we observed a chick. (Incuba-
tion of the one to two eggs laid by females lasts 4 weeks.) 
Chick age was estimated by the number of days between the 
estimated hatch date and the date of capture.

Territorial intrusions occurred commonly during our 
visits to loon territories, and intruders were often banded 
(e.g., 126 of 300 intruders in 2018; 42%). Our efforts to 
identify intruders from leg bands were crucial to our analysis 
of survival to adulthood, because 48% (N = 163) of all loons 
that we had banded as chicks and returned to Wisconsin 
(N = 337) were seen only as intruders between the age of 2 
and 4 years and never settled on a breeding territory (Piper 
et al. 2015).

Intensity of field observation varied during the study and 
seemed likely to affect our probability of reobserving a loon 
banded as a chick on the breeding grounds. Based on the fre-
quency with which young loons were observed in their first 
years on the breeding grounds (Piper et al. 2015), we there-
fore calculated observation intensity as a weighted index 
of the number of observations that occurred 2, 3, 4, and 5 
years after the hatch year for each banded chick. Observation 
intensity was equal to 0.2 times the number of lake visits 
by all observers 2 years after the hatch year + 0.5 times the 
number of visits 3 years after hatch + 0.2 times visits 4 years 
post-hatch + 0.1 times visits 5 years post-hatch. For exam-
ple, observation intensity equaled 1763 for chicks banded in 
2013 but only 1087 for 2016 hatchlings owing to lower rates 
of field observation in 2018–2021 than from 2015 to 2018.

Natal dispersal by males (mean ± SD: 10.0 ± 6.7 km, 
N = 137) is, on average, of much shorter distance than that 
of females (32.0 ± 42.6, N = 60). Thus, many females that 
we banded as chicks survived to adulthood but were never 
resighted, because they settled outside of our study area. 
This pattern created a resighting bias that we accounted for 
by including sex as a covariate in our analysis of return rate.

Measurement of ocean attributes

We do not know the exact wintering location of any loon 
banded in our Wisconsin study area. However, we know that 
80% of our loons spend their winter months (late Novem-
ber through early April) along Florida’s Gulf Coast between 
Pensacola and the Florida Keys (Kenow et al. 2021). Win-
tering loons use estuaries and coves and also occur offshore 
as far as 120 km along the West Florida Continental Shelf 
(Kenow et al. 2021; eBird 2025).

A long-term database maintained by EPCHC (Environ-
mental Protection Commission of Hillsborough County), near 
Tampa Bay, Florida, contains ocean data collected monthly, 
at consistent locations in the Tampa area, and by consistent 
methods since 1972. These data seemed appropriate to inves-
tigate the impact of ocean attributes on Wisconsin loons for 
three reasons. First, ocean properties seemed likely to influ-
ence prey availability, underwater foraging conditions, and/
or health and survival of loons during winter. Second, based 
on recoveries of our loons that have died in winter months, 
Tampa appears to be a “hotspot” for Wisconsin loons. Ten 
of 34 Florida loon recoveries through 2022 occurred within 
75 km of Tampa Bay (29%), a stretch that covers only 12% 
of Florida’s Gulf coast. Third, Tampa is the closest city to the 
midpoint of Florida’s Gulf Coast, roughly equidistant between 
the western edge of the range (the Alabama border) and the 
Keys to the south. Thus, ocean water at Tampa should provide 
an indication of ocean attributes of the Florida Gulf Coast as 
a whole.

Seawater measurements that we investigated for their 
potential influence on loon fitness were those taken monthly 
by EPCHC from November through March (loons’ winter-
ing period) at “Station 94”, which was at Tampa Bay Buoy 
R10 in Egmont Channel. This point was far enough away 
from rivers and channels feeding Tampa Bay that its meas-
urements reflect the coastal conditions that most Wisconsin 
loons face. The measurements we used were water clarity 
(secchi disk), temperature, dissolved oxygen, pH, salinity, 
ammonia, nitrates/nitrites, organic nitrogen, total phospho-
rus, and chlorophyll-a concentration. Field measurements 
of these ocean attributes followed the Florida Department 
of Environmental Protection 2017 Standard Operating Pro-
cedures for Field Activities DEP SOP001/01 (https://​flori​
dadep.​gov/​dear/​quali​ty-​assur​ance/​conte​nt/​dep-​sops). In situ 
measurements of temperature, salinity, pH, and dissolved 

https://floridadep.gov/dear/quality-assurance/content/dep-sops
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oxygen were gathered by means of a multiprobe sonde 
(Aqua Troll, Hydrolab Quanta or Surveyor model). Sec-
chi depth was measured ± 0.1 m. Water samples for nutri-
ents and chlorophyll-a were collected using a beta sampler 
(Wildco® Beta™ Horizontal Water Bottle). Lab analysis 
occurred for chlorophyll-a, total phosphorus, and nitrates 
following Standard Method 10200 H 20th Ed., EPA 365.4/
AQS400, and Standard Method SM4500NO3F/AQS400, 
respectively.

Statistical analysis

Investigating survival, territory settlement, 
and reproductive success

We examined potential predictors of two binary variables 
and one continuous variable related to the fitness of young 
loons: 1) return or non-return to the breeding grounds; 2) 
settlement or not with a mate on a breeding territory; and 3) 
number of chicks reared to 5 weeks of age. We used natal 
territory as a random effect in each analysis to account for 
the fact that the 1109 loons in the sample were reared on 
only 163 different territories. We used generalized logistic 
mixed models (“xtlogit” command in Stata 18.5; Stata-Corp, 
College Station, TX, USA) to run the analyses of survival 
and settlement and a linear mixed model (“mixed” command 
in STATA) to run the analysis of the number of chicks.

Predictors examined and model selection

Sex was an especially important covariate examined as a 
potential predictor of fitness. Male loons disperse shorter 
distances from their natal lakes to breed than females (see 
above) and are therefore more often reobserved in the study 
area as young adults at 2 to 4 years of age. In addition, males 
tend to outweigh females as chicks. Thus, these two pat-
terns raised the possibility of finding a spurious relationship 
between chick condition and return rate or one that appeared 
stronger than it actually was. Inclusion of sex as a covari-
ate accounted for this potential bias. We also restricted our 
analysis of return rate to chicks hatched from 2008 to 2020, 
because we only determined sex from DNA in those years. 
Other known or suspected covariates of fitness that we tested 
were total observer-hours during the interval from 2 to 4 
years after a chick’s banding, distance from a chick’s natal 
lake to the geometric center of the study area, and year.

We used a chick’s mass at capture divided by its age in 
days (“chick condition”, in units of g/day) as a potential 
predictor of fitness. In loons, mass is linearly related to age 
over the narrow 3- to 6-week-old age window during which 
we captured and weighed chicks, a pattern seen in other 
slow-developing birds (e.g., Huin and Prince 2000; Lok et al. 

2014). Our measure of chick condition, if associated with 
fitness, would indicate a silver spoon effect.

Finally, we tested attributes of each loon’s natal lake and 
winter ocean attributes as potential predictors of fitness. 
Lake attributes included area, maximum depth, pH, and 
long-term water clarity. Attributes of ocean water during 
winter were based on measurements at Tampa Bay from 
EPCHC measurements. They comprised monthly measures 
of all attributes available throughout our period of investiga-
tion (1993 to 2020) from November through March: water 
clarity, temperature, dissolved oxygen, pH, salinity, ammo-
nia, nitrates/nitrites, organic nitrogen, total phosphorous, and 
chlorophyll-a concentration.

We did not include cohort effects in our models. Animals 
in landscapes that experience widespread climatic or biotic 
fluctuations affecting many breeders simultaneously, such as 
colonial seabirds facing booms or crashes in fish populations 
(e.g., Erikstad et al. 2013) or deer born in dense populations 
and during cold springs (Kruuk et al. 1999), are prone to 
cohort effects (Beckerman et al. 2002). However, most of 
our loon pairs bred alone on small lakes (e.g., 84 of 105 pairs 
in 2020; 80%) or were one of two pairs on lakes of moder-
ate size (14 pairs on 7 lakes; 13%). Hence, almost all chicks 
in our study were reared on small lakes with unique size, 
shape, geographic orientation, bathymetry, water chemistry, 
and biota. Thus, the peculiarities of the natal lake were prob-
ably more influential on rearing conditions, especially the 
kind and abundance of food chicks received from parents, 
than physical or biotic aspects of the larger landscape. In any 
event, our chick condition variable (mass/age) incorporated 
influences of the landscape, peculiarities of a chick’s natal 
lake, and degree of care shown by parents into a single vari-
able that provided a good measure of each chick’s ability to 
thrive and grow in its first 4 to 6 weeks.

Model selection proceeded by testing predictors of return, 
settlement, and breeding success one by one, starting with 
covariates, and retaining those whose addition caused the 
Akaike information criterion (AIC) to decrease by ≥ 2. 
Models that differed by less than 2 in AIC were regarded as 
equivalent. For all three analyses, we ran models with and 
without the random effect and dropped it if it did not cause 
AIC to decline by 2 units or more.

Examining predictors of chick condition

Since we were chiefly interested in the possible existence of 
a silver spoon effect, we also explored predictors of chick 
condition (mass/age in g/day) itself. Chicks were reared on 
a single lake or part of a lake, so we limited our potential 
predictors to the following: year, lake size (natural log-trans-
formed to normalize: maximum value 200 ha), maximum 
depth, pH (measured with a pH meter in August 2005), and 
July water clarity (mean of satellite measurements in July 
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of a chick’s hatch year; see Piper et al. 2024). Again, we 
included natal territory as a random effect, because many 
chicks in our sample were reared on the same territory. We 
employed the “mixed” command in STATA for the anal-
ysis. Model selection proceeded as with the three fitness 
attributes.

Results

Predictors of juvenile return

Inclusion of the random effect natal territory in models to 
predict the return of juveniles in adulthood caused AIC to 
increase by 2.0, so we dropped this term, which simpli-
fied the analysis to a logistic regression. Thus configured, 

a single model containing four predictors of juvenile 
return produced the smallest AIC value (Likelihood Ratio 
χ5

2 = 71; p < 0.0005; N = 596 banded chicks from 136 lakes; 
Table 1), but two other models, each with five predictors, 
produced AIC values that exceeded that of the best model 
by only 0.77 and 1.80 (Table 1). Overall, the strongest pre-
dictor of return rate was year; return probability declined 
13% each year (ΔAIC = + 7.1 when dropped from the top 
model; Fig. 1). The second strongest predictor of return 
was nitrate/nitrite concentration in November of the sec-
ond year; return rate increased by 9% for µg/L decrease in 
second-year inorganic N concentration (ΔAIC = + 6.6 when 
dropped; Fig. 2). The third strongest predictor of return was 
the covariate sex; return rate increased in probability by 87% 
among males (ΔAIC = + 5.6 when sex was dropped). The 
fourth strongest predictor of return rate was chick condition; 

Table 1   List of logistic regression models to predict probability of return by loons banded as chicks by increasing AIC value

Each row shows a different model, its associated AIC value, and the degree of support it received compared to all others tested
“+” indicates that predictor was positively associated with return probability, “−” indicates a negative association. Useful predictors included 
year, sex, chick condition (mass/age), water clarity in December and March of the first winter, and nitrate/nitrite concentration in November of 
the 2nd winter

Cons Ck cond Sex Year Dclar1st Mclar1st Nnitr2nd AIC ΔAIC Relative likelihood Weight

X  +   +  − − 542.89 0 1.00000 0.27956
X  +   +  −  +  − 543.67 0.774 0.67909 0.18691
X  +   +  −  +  − 544.69 1.795 0.40759 0.11096
X  +   +  −  +   +  − 545.5 2.61 0.27117 0.07294
X  +   +   +  − 545.6 2.704 0.25872 0.06959
X  +   +  −  +   +  − 545.67 2.771 0.25020 0.06720
X  +  − − 546.18 3.287 0.19330 0.05184
X  +   +  −  +  − 546.67 3.776 0.15137 0.04057
X  +   +  −  +  547.4 4.507 0.10503 0.02814
X  +   +   +   +  − 547.59 4.7 0.09537 0.02554
X  +   +  −  +  547.66 4.769 0.09214 0.02468
X  +  − − 548.13 5.233 0.07306 0.01957
X  +   +  −  +   +  − 548.65 5.756 0.05625 0.01506
X  +   +  − 549.34 6.443 0.03990 0.01068
X  +   +  − 549.97 7.072 0.02913 0.00780
X  +  −  +   +  − 551.23 8.339 0.01546 0.00414
X  +  − 553.28 10.381 0.00557 0.00149
X  +   +  − 553.3 10.401 0.00551 0.00148
X  +  − 555.02 12.13 0.00232 0.00062
X  +   +  −  +  555.52 12.625 0.00181 0.00049
X  +   +  −  +  557.19 14.291 0.00079 0.00021
X − 563.88 20.984 0.00003 0.00001
X − 564.4 21.504 0.00002 0.00001
X  +   +  590.39 47.496 0.00000 0.00000
X  +  594.94 52.049 0.00000 0.00000
X  +  605.31 62.419 0.00000 0.00000
X 606.16 63.267 0.00000 0.00000
X  +  607.34 64.442 0.00000 0.00000



	 Oecologia         (2025) 207:196   196   Page 6 of 12

return rate increased by 2.7% for each increase in gram/day 
(ΔAIC = + 3.3 when dropped; Fig. 3). The predictors ocean 
clarity in December of the first winter and ocean clarity in 
March of the first winter each appeared in one of the top 
three models and were positively associated with return rate.

Predictors of territory settlement

Only two predictors were associated with successful set-
tlement on a territory: sex and ocean pH in March of the 
first winter (Likelihood ratio χ2

2 for best model = 21.0; 
p < 0.0005; N = 135 returning chicks from 77 lakes). Again, 
inclusion of natal territory as a random effect caused AIC to 
increase by 2.0, so we dropped it and simplified the model 
to a logistic regression. Males were 5.4 times more likely 
to settle on territories than females (ΔAIC = + 16.6 when 
dropped). Likelihood of settlement increased by 5.2% for 
each 0.1 unit increase in pH in March of a loon’s first winter 
(ΔAIC = + 2.0 when dropped).

Predictors of chicks fledged

Among settlers, six predictors were associated with the 
number of chicks a loon fledged during its lifetime (Best 
Model: F6

89 = 3.84; p < 0.0019; N = 96 chicks from 62 
territories that returned and settled; Table 2). However, a 
second model predicted chick production almost as well 
(ΔAIC = + 0.13; Table 2). Again, AIC fell by 2.0 when the 
natal territory was dropped as a random effect, so we ran 
a multiple regression analysis. Ocean pH in December of 
the first year was the factor associated most strongly with 
lifetime chick production. The number of chicks increased 
by 0.79 for each 0.1 unit decrease in December ocean pH 
in the first winter (ΔAIC = + 7.4 when dropped; Fig. 4). 
Second, organic nitrogen in November of the first year was 
negatively associated with chick production; loons produced 
1.0 more chicks for every 0.1 mg/L decrease in the con-
centration of organic nitrogen in seawater (ΔAIC = + 6.1 
when dropped). Third, chick production increased by 0.9 
per meter decrease in water clarity in January of the first 
winter (ΔAIC = + 3.6 when dropped). Fourth, the number of 
chicks fledged increased by 0.07 per unit increase in chick 
condition (g/day; ΔAIC = + 2.5 when dropped; Fig.  5). 
Fifth, chick production rose by 0.13 chicks for every 1 µg/L 
increase in inorganic nitrogen in December of the first winter 
(ΔAIC = + 2.2 when dropped). Finally, inorganic nitrogen 
in January of the second winter showed a possible negative 
association with chick production. The predictor appeared 
in only three of the eight models within 4 AIC units of the 
top model. The number of fledged chicks rose by 0.11 for 
each 1 µg/L decrease in inorganic nitrogen in January of the 
second winter (ΔAIC = + 0.13 when dropped).

Predictors of chick condition

Nine models fell within 2 AIC of the best one in the analysis 
of chick condition (F6

555 for best model = 17.1; p < 0.0005; 
N = 562 chicks from 128 territories; Table 3). Sex, a covari-
ate, was the most important predictor; condition was 5.8 g/

Fig. 1   Mean predicted values by year (± SE) from the best-fitting 
model to determine the probability of return. Data were only avail-
able from 2008 on because sex was not determined for all chicks 
before 2008

Fig. 2   Mean predicted probability of return (± SE) by concentration 
of nitrates + nitrites in November of the second year of life

Fig. 3   Mean predicted probability of return ± SE by chick condition
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day higher among males (ΔAIC = + 46.9 when dropped). 
Year was the second most important predictor of chick con-
dition, which has declined steadily during the study period 
at a mean rate of 0.31 g/day a year (ΔAIC = + 13.6 when 
dropped; Fig.  6). Water clarity influenced condition in 
two respects. Condition increased by 0.97 g/day for each 
1 m increase in mean water clarity in July during the natal 
year (ΔAIC = + 1.7 when dropped; Fig. 7), but decreased 

by 0.38 g/day per meter increase in long-term mean clarity 
(ΔAIC = + 0.5 when dropped). Lake size was the next most 
important predictor; condition increased by 0.92 g/day for 
each 1 natural log unit increase in lake size (ΔAIC = + 1.6 

Table 2   List of regression models to predict number of chicks fledged by loons that were banded as chicks

Each row shows a different model, its associated AIC value, and the degree of support it received compared to all others tested
“+” indicates that predictor was positively associated with return probability, “−” indicates a negative association. Among predictors that 
showed at least a weak association with chick production were ocean pH in December of the first year, organic nitrogen in November of the first 
year, water clarity in January of the first winter, chick condition, inorganic nitrogen in December of the first winter and inorganic nitrogen in 
January of the second winter

Cons Ck cond DNitr1st NOrgN1st Jclar1st DpH1st JNitr2nd AIC ΔAIC Relative likelihood Weight

X  +   +  − − − − 490.01 0 1 0.2558
X  +   +  − − − 490.14 0.129 0.937536 0.2398
X − − − 491.8 1.793 0.407995 0.1044
X  +  − − − − 492.23 2.224 0.328901 0.0841
X  +  − − − 492.31 2.3 0.316637 0.081
X  +  − − − − 492.53 2.527 0.282663 0.0723
X  +   +  − − 493.61 3.599 0.165382 0.0423
X − − − 493.66 3.655 0.160815 0.0411
X  +   +  − − − 494.53 4.525 0.10409 0.0266
X  +  − − 494.66 4.656 0.097491 0.0249
X  +   +  − − − 496.14 6.128 0.046701 0.0119
X − 497.19 7.187 0.027502 0.007
X  +   +  − − − 497.4 7.39 0.024847 0.0064
X − 499.54 9.534 0.008506 0.0022
X  +  499.65 9.639 0.008071 0.0021
X 500.13 10.126 0.006327 0.0016
X − 500.95 10.939 0.004213 0.0011
X  +  501.26 11.257 0.003594 0.0009
X − 501.35 11.344 0.003441 0.0009

Fig. 4   Means ± SEs of predicted values for number of fledged chicks 
by ocean pH in December of first winter of life. (Since these are 
predicted values from the model, some fall outside of the possible 
range.)

Fig. 5   Means of predicted values of chicks (diamonds) and distribu-
tion of actual numbers of chicks by chick condition for loons that set-
tled on territories
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when dropped; Fig.  8). Maximum lake depth was pos-
sibly important, as condition rose by 0.19 g/day for each 
meter increase in maximum depth (ΔAIC = + 0.7 when 
dropped). Lake pH showed a weak association with condi-
tion, which increased by 1.6 g/day for each unit increase in 
pH (ΔAIC = + 1.4 when dropped).

Discussion

Effects of winter ocean conditions

Our long-term study of fitness in a breeding population of 
common loons has made one pattern clear. Physical and 

Table 3   List of regression 
models to predict chick 
condition (g/day) of loons that 
were banded as chicks

Each row shows a different model, its associated AIC value, and the degree of support it received compared 
to all others tested
“+” indicates that predictor was positively associated with return probability, “−” indicates a negative 
association. Potential predictors included year, and five attributes of the natal lake: lake size, short- and 
long-term water clarity, maximum depth, and pH

Const Sex Year Lnlksize LTclar Maxdep Julyclar pH AIC ΔAIC Relative 
likeli-
hood

Weight

X  +  −  +  −  +   +  4165.706 0.000 1.000 0.148
X  +  − −  +   +   +  4165.875 0.169 0.919 0.141
X  +  −  +  −  +  4166.434 0.728 0.695 0.104
X  +  −  +  −  +   +  4167.029 1.323 0.516 0.076
X  +  −  +  −  +   +   +  4167.036 1.330 0.514 0.076
X  +  − −  +   +  4167.261 1.555 0.460 0.068
X  +  −  +   +   +  4167.483 1.777 0.411 0.061
X  +  − −  +   +  4167.562 1.856 0.395 0.058
X  +  −  +  −  +  4167.574 1.868 0.393 0.058
X  +  −  +   +  4167.973 2.267 0.322 0.048
X  +  −  +  4168.598 2.892 0.236 0.035
X  +  −  +   +  4168.784 3.078 0.215 0.032
X  +  − −  +  4169.189 3.483 0.175 0.026
X  +  −  +  − 4169.580 3.874 0.144 0.021
X  +  −  +   +  4169.660 3.954 0.138 0.020
X  +  −  +  −  +  4169.753 4.047 0.132 0.020
X  +  −  +   +   +  4170.612 4.906 0.086 0.013
X  +  −  +  4176.369 10.663 0.005 0.001
X  +  − 4177.626 11.920 0.003 0.000
X  +   +  −  +   +  4179.314 13.608 0.001 0.000
X  +  4197.857 32.151 0.000 0.000
X − 4224.480 58.774 0.000 0.000
X −  +  4228.315 62.609 0.000 0.000
X  +  4241.149 75.443 0.000 0.000
X  +  4241.319 75.613 0.000 0.000
X  +  4241.385 75.679 0.000 0.000
X − 4248.323 82.617 0.000 0.000
X 4249.265 83.559 0.000 0.000
X  +  4249.613 83.907 0.000 0.000

Fig. 6   All predicted values for chick condition by year. Line shows 
the slope of the relationship and its 95% confidence interval
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chemical attributes of the lakes in which the birds were 
raised and the ocean in which they spent their winters affect 
their survival and breeding success throughout life.

It is perhaps surprising that we could detect effects of 
winter ocean attributes on loon fitness at all. Eighty percent 
of loons breed in northern Wisconsin winter along Flor-
ida’s entire Gulf coastline, from Pensacola to the Keys, a 
length of 1239 km, and the remaining 20% in winter along 
the Atlantic coast from southern Florida up to the Carolinas 
(see also Kenow et al. 2021). We used ocean measurements 
from only one point within this extensive range. The fact 
that we detected significant effects despite this limitation 
suggests that: 1) ocean conditions in Tampa might be repre-
sentative of conditions along the entire Florida Gulf Coast 
(and perhaps, to an extent, the Atlantic coast), and/or 2) a 
large enough proportion of our loon population winters near 
Tampa Bay that patterns were detected. However, the limited 
precision with which we measured ocean attributes for our 
wintering population as a whole requires us to interpret our 
findings with caution.

The concentration of inorganic nitrogen (e.g., NH4
+ and 

NO3
−) in ocean water in a loon’s second winter was nega-

tively associated with return rate to the breeding grounds 
as an adult. This was, in fact, the only second-year oceanic 
factor that we found to affect loon fitness strongly. Inor-
ganic nitrogen increases are known to fuel the growth of 
phytoplankton, so it seems likely that high algal growth 
spawned by inorganic nitrogen reduced survival among 
second-year loons, which in turn produced a lower return 
rate. Of course, it is curious that this effect occurred in the 
second year of loons’ lives, not the first, when loons would 
seem more vulnerable to environmental hazards. In addi-
tion, pH in March of the first winter had a weak positive 
association with the settlement rate of young adults. Since 
higher ocean pH promotes survival in a variety of marine 
fishes, crustaceans, and mollusks (Kroeker et al. 2013), 
this result likely means that a favorable foraging environ-
ment allows loons to remain in good condition, producing 
a positive carryover effect on settlement (which occurs at 
4 to 8 years; Piper et al. 2015).

While favorable ocean conditions appeared to promote 
high survival and settlement, poor ocean conditions were 
associated with high chick production. The strongest pre-
dictor of chick production was low ocean pH in a loon’s 
first December, which generally reduces the abundance of 
marine animals (Kroeker et al. 2013). Fledging of chicks 
among adult loons was also predicted by two other first-year 
patterns: high inorganic nitrogen in December and low water 
clarity in January, both of which are likely indications of 
phytoplankton growth (e.g., algal blooms) and consequent 
poor foraging conditions (Regnier and Steefel 1999; Abdel-
rhman 2016). The relationship between chick production and 
low organic nitrogen (e.g., amino acids, proteins) in the first 
November too implies that unfavorable, unproductive ocean 
conditions early in life were associated with more chicks 
being fledged (Letscher et al. 2013), although some studies 
have found that organic nitrogen can support algal growth 
(Berman and Bronk 2003). In sum, low water quality during 
a yearly cohort’s first winter was consistently predictive of 
enhanced success in the fledging of chicks by that cohort.

The association between poor ocean conditions and high 
chick production is, on its face, difficult to explain. However, 
unfavorable conditions faced by first-winter loons likely 
resulted in natural selection that we did not detect in our 
measurements of return rate or territory settlement. If selec-
tion “weeded out” less fit competitors within yearly cohorts, 
then survivors within those cohorts were individuals of high 
fitness, which were likely to produce many chicks. In any 
event, several studies have reported that harsh conditions 
that a yearly cohort faces early in life can cause high mortal-
ity among poor phenotypes and thus leave behind a set of 
individuals of high fitness (Rose et al. 1998; Garratt et al. 
2015; Drake et al. 2025).

Fig. 7   All predicted values of chick condition for loons plotted 
against mean July water clarity in their natal year. Line shows the 
slope of the relationship and its 95% confidence interval

Fig. 8   All predicted values for chick condition by natural logarithm 
of lake size. Line shows slope of the relationship and its 95% confi-
dence interval
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But why did our measures of return rate and territory 
settlement not show the results of selection? There are two 
possible reasons for this oddity. First, the number of chicks 
fledged is a quantitative measure and is therefore likely to 
capture the variability in fitness better than the binary vari-
ables used to measure return rate and settlement. Second, the 
number of chicks fledged during a loon’s lifetime is a more 
comprehensive measure of fitness than return or settlement, 
because it incorporates both long-term adult survival and the 
capacity to raise young successfully.

Silver spoon effect

While we obtained little evidence of carryover effects in 
loons, a silver spoon effect was evident in two separate anal-
yses: survival to breeding age and lifetime reproductive suc-
cess. In fact, the silver spoon effect in loons, which affects 
the survival of young adults and the number of chicks they 
fledge, contrasts with most others reported in vertebrates, 
which are weak (Oort and Otter 2005), affect only one com-
ponent of fitness or one sex (Tilgar et al. 2010; Douhard 
et al. 2014), occur during a narrow phase of the lifespan 
(Ancona and Drummond 2013; Hamel et al. 2016), or are 
expressed only under narrow environmental conditions 
(Pigeon et al. 2019; but see Song et al. 2019).

Of course, the prominent silver spoon effect in loons 
shines a spotlight on chick-rearing conditions. Qualities of 
a loon’s natal lake such as size, clarity, and depth strongly 
affect the amount of food it receives from its parents and, 
hence, its fitness throughout life. In general, loon chicks 
reared on large, deep lakes achieve better condition than 
those on small shallow ones. However, water clarity had dif-
fering impacts in the short and long term. While clear water 
during the month of July (when typical chicks are grow-
ing from 2 to 6 weeks of age) is favorable to chick growth, 
high long-term clarity of the natal lake was associated with 
reduced growth, suggesting that foraging efficiency of loon 
parents on very clear lakes might be sensitive to fluctuations 
in clarity (see also Piper et al. 2024).

Loons’ vulnerability to a negative silver spoon effect 
helps us solve a puzzle we encountered in our investigation 
of the Wisconsin population. Significant declines in survival 
of young and old chicks, chick mass, and brood size were 
accompanied by an alarming loss of young adults prior to 
territory settlement (Piper et al. 2020). It is now evident that 
the same poor breeding conditions that harmed chicks in the 
short term weakened them in the long term, causing high 
mortality and low lifetime breeding success among those 
that survived past fledging age.

Although the silver spoon effect provides a partial solu-
tion to the puzzle of the die-off of young adult loons, the 
very strong yearly declines in return rate and chick produc-
tion (see Tables 1, 3) persist even after chick condition is 

considered. We detected these declines not as yearly cohort 
effects, which can fluctuate upwards and downwards over 
a span of many years, but as simple linear monotonic 
decreases in return rate and chick production. There seem 
to be two possible explanations for the strong downward 
trends in these fitness measures. First, our measurement of 
chick mass decline, based on a single mass measurement, 
might have failed to measure chick condition fully. If so, 
then the year predictor might have picked up some of the 
variability in chick mass lost in our single measurement. 
Second, an unmeasured environmental factor or factors, 
such as steadily increasing human boating activity, might 
be causing these two declines in loon fitness.

Our results suggest that silver spoon effects experienced 
by a loon in the first weeks of life on its natal lake are 
stronger than carryover effects encountered during its ini-
tial winter. Such a pattern would not be surprising. Yet, 
it is possible that carryover effects in loons are stronger 
than we have reported here. Our use of measurements from 
a single location probably represented ocean conditions 
poorly for many wintering loons in our breeding popula-
tion. If we had data from ocean conditions across the win-
ter range and could assess fitness impacts on individuals 
based on the ocean conditions they faced at their exact 
wintering location, we might have found more substantial 
carryover effects.

The potential consequences of silver spoon effects in 
animals generally seem underappreciated for two reasons. 
First, owing to the paucity of field studies with the band-
width to mark and take measurements on animals during the 
developmental stage and collect fitness data on those same 
individuals as adults, we have only a smattering of reports 
of silver spoon effects. Yet, the taxonomic breadth of such 
effects implies that they occur in most animal species. Sec-
ond, silver spoon effects are by nature cryptic; that is, they 
produce many individuals that appear normal in one life-his-
tory phase but in reality have low fitness that contributes to 
population decline. Thus, studies that rely solely upon meas-
ures of breeding success like lower rates of young fledging 
or reaching independence are likely to greatly underestimate 
the negative impact of poor developmental conditions on 
animal populations.

A robust silver spoon effect confers both good and bad 
news for ecologists studying threatened species. Tradition-
ally, identifying the cause(s) of population decline has 
required careful study of multiple phases of the life his-
tory (Baillie 1990; Buehler et al. 2008). But if an animal’s 
condition in its first few weeks provides a good assay of its 
fitness throughout life, then conservation efforts aimed at 
improving rearing conditions during that brief, sensitive 
window might boost populations in the long term. On the 
other hand, few studies have the scope to measure silver 
spoon effects, so the potential to learn about the long-term 



Oecologia         (2025) 207:196 	 Page 11 of 12    196 

fitness of animal populations through data collection early 
in their lives is largely unrealized.

We generally have a poor idea of how species extinc-
tions occur (Cahill et al. 2013). Thus, another important 
outcome of our findings is the demonstration of an apparent 
link between low foraging efficiency and population decline. 
Many loons do not die quickly from starvation; rather, lim-
ited food received during the chick phase leads to phenotypi-
cally weak individuals that neither survive nor reproduce 
well. And therein lies the most troubling aspect of a negative 
silver spoon effect. Unfavorable breeding conditions produce 
young of poor quality, which may enter the adult population 
normally yet suffer downstream impacts such as low adult 
survival and/or low reproductive success (Albon et al. 1987). 
If sustained and population-wide, silver spoon effects can 
lead to long-term downturns in populations that show no 
obvious signs of decline (Albon et al. 1992).
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