

AGENDA COVER MEMO

Memorandum Date: October 17, 2025

Order Date: November 4, 2025

TO: Board of County Commissioners

DEPARTMENT: Public Works

PRESENTED BY: Becky Taylor, Senior Transportation Planner

AGENDA ITEM TITLE: ORDER/In the Matter of Approving the 2025 Transportation Safety

Action Plan (TSAP)

I. <u>MOTION</u>

Move to approve the 2025 Transportation Safety Action Plan.

II. AGENDA ITEM SUMMARY

The Board is being asked to approve the 2025 TSAP to advance Lane County's commitment to work Toward Zero Deaths.

III. BACKGROUND/IMPLICATIONS OF ACTION

A. <u>Board Action and Other History</u>

On July 18, 2017, the Board approved the 2017 TSAP (Order No. 17-07-18-09). That action included a policy commitment to work Toward Zero Deaths (TZD) which is the national strategy on highway safety. That same year, the Fatal Crash Investigation Team (FCIT) was created to align County departments in the TZD work. The FCIT reports to the Board twice each year.

Between 2017 and 2025, the consistent message to the Board by the FCIT is that fatal and serious injury crashes are only getting worse and that the County lacks resources to provide sufficient education, enforcement, and engineering interventions to prevent these crashes. In order to access certain safety grant funding, the County's TSAP needs to be updated every five years. The TSAP update process is a labor-intensive process.

Lane County secured Safe Streets and Roads for All (SS4A) program funds through a competitive grant application process through the Federal Highway Administration (FHWA) to update the TSAP. Over the past year, staff has been working with safety expert consultants and conducting community meetings across

Lane County to produce an updated TSAP. On July 22, 2025, the Board's FCIT Report described the 2025 TSAP update process underway.

B. Policy Issues

The 2017 TSAP included the policy commitment to work Toward Zero Deaths. The 2025 TSAP strengthens that policy commitment by providing a strategic framework to achieve TZD and establishes a goal of achieving zero deaths and serious injuries by 2045. This date-specific commitment is required of the TSAP to access certain safety grant funding needed to implement life-saving projects.

Saving lives otherwise lost by traffic crashes is fundamental to achieving the County's mission statement: *We improve lives*. Compared to peer counties in Oregon, Lane County's fatal and serious injury crash rate is among the highest. The number of people killed or seriously injured in Lane County over the latest five years of crash data totals 1,045 people.

For reference, Washington County, Benton County, Deschutes County, Multnomah County, and Marion County are also updating their TSAPs via the SS4A program with comparable policy commitments. Further, the 2021 Oregon Department of Transportation TSAP establishes the following: "Oregon envisions no deaths or life-changing injuries on Oregon's transportation system by 2035." This time-bound commitment, however, does not result in a funding or other penalty if the goal is not achieved.

C. Board Goals

The 2025 TSAP is based on the "safe system approach", a holistic framework that recognizes that the responsibility of roadway safety is shared, and creates multiple layers of protection to save lives. These multidisciplinary layers are in alignment with the following Board goals identified within the 2025-2027 Lane County Strategic Plan:

Goal 1. Safe and Healthy County

Goal 2. Vibrant Communities

Goal 3. Robust Infrastructure

While the Strategic Plan does not define any *objectives* specific to transportation safety, working toward zero deaths and serious injuries on County roads ensures a safer county, supports vibrancy within our communities, and is a critical lens in managing robust infrastructure.

The Safe and Healthy County objectives discuss enhancing public safety and reducing harm specific to emergency response. Fatal and serious injury crashes

are emergencies that draw upon first responder and hospital resources; elimination of these crashes reduces strain on the emergency response system. Additionally, post-crash care is a key component to the safe system approach, which guides the 2025 TSAP.

The *Vibrant Communities* objectives discuss *enhancing community well-being*. Lane County communities rely on County roads to access basic needs, such as employment and education; death or serious injury should not be an acceptable cost to transportation mobility. Lane County's rural communities are most impacted by roadway safety. The rate of fatal and serious injury crashes per population is three times greater than in the Eugene-Springfield area. In addition to this disproportionate share of high severity crashes, people living in rural areas often have fewer transportation options and must traveling longer distances. The 2025 TSAP is focused on rural Lane County and reducing crash risk on rural County roads.

The Robust Infrastructure goal acknowledges the importance of resiliency within Lane County's transportation system. As documented in the Board-approved Transportation System Plan (Lane County's 20-year master plan on transportation), Lane County has historically performed exceptionally at maintaining pavement condition of roads that were built decades ago; however, these roads are not *robust* as most do not meet modern engineering standards for multimodal safety. The safe systems approach asserts that safety is an ethical imperative of the designers and owners of the transportation system; the 2025 TSAP recognizes Lane County's financial constraints and recommends both lower-cost and longer-term engineering solutions.

Financial and/or Resource Considerations

The 2025 TSAP makes efficient use of limited resources by identifying the key factors contributing to the greatest risk of fatal and serious crashes; and recommending prioritized solutions to mitigate these risks. This is achieved primarily by identifying a "High Priority Network", locations deemed most critical for implementing engineering, education, and enforcement actions to reduce roadway departure crashes, intersection crashes, and crashes involving drugs, alcohol, and/or excessive speed. Successful implementation depends on strong leadership committed to safety at all levels; additional funding for Public Health's drug and alcohol prevention education program; sustainable funding for the Sheriff's Office to reinstate a traffic patrol team; as well as additional funding and strong policy guidance for Public Works to implement engineering safety features on County roads. This plan does not make financial commitments but recognizes that additional funding is necessary for implementation. The plan itself will qualify Lane County to apply for SS4A implementation funding.

However, in order to eliminate deaths on our roadways, Lane County cannot rely exclusively on grant funding, which is limited, competitive, and uncertain. Since 2017, grant funding, has enabled modest road safety improvements (e.g., curve warning upgrades through the All Roads Transportation Safety grant program); and some limited traffic patrol (grants covering overtime shifts). Unfortunately, this is not enough to address the pressing need for transportation safety. Given the number of people in Lane County dying and being seriously injured on County roads, funding for Lane County's engineering, education, and enforcement programs must be a priority.

D. Health Implications

Traffic crashes are a significant public health issue. Crashes impact physical and mental health, disproportionately affect rural populations, and are a leading cause of death. Most of these crashes are preventable. The 2025 TSAP identified proven strategies that can help prevent these deaths and injuries.

E. Analysis

The greatest risks contributing to fatal and serious injury crashes are within Lane County's control to mitigate, as follows:

- Roadway departure crashes: engineering countermeasures on County roads administered by Public Works
- Drug and/or alcohol involved crashes: education actions administered through the Public Heath drug and alcohol prevention program
- Speed-involved crashes: enforcement actions administered through the Sheriff's Office.

The 2025 TSAP provides clear, data-backed information about the greatest risks on our transportation system, and effective mitigation strategies to make County roads safer. This plan also serves as a call to action. The first critical action is the Board's approval of the 2025 TSAP – to establish the prevention of deaths and serious injuries from traffic crashes as a County priority and to enable the County to access safety grants to implement life-saving projects.

F. <u>Alternatives/Options</u>

	1) Move to approve Order No as presented; or
	2) Move to direct staff to revise Order No as directed by the Board and to return with revised Order for the Board's consideration and action; or
	3) I move to deny Order No
IV.	RECOMMENDATION
	Staff recommends Option 1 for approval of the 2025 TSAP as presented in the attached, draft Order.
V.	TIMING/IMPLEMENTATION
	If approved by the Board, Order No will become effective 30 days following enactment.
VI.	FOLLOW-UP
	Should the Board choose Option 2, staff will revise Order No as directed and return for approval of the revised order.
VII.	<u>ATTACHMENTS</u>
	Draft Order and 2025 TSAP

BEFORE THE BOARD OF COMMISSIONERS OF LANE COUNTY, OREGON

ORDER NO:	Transportation Safety Action Plan (TSAP)
WHEREAS , the Board of Commission 2017 (Order No. 17-07-18-09); and	ers approved Lane County's first TSAP on July 18,
WHEREAS , the TSAP must be update grant funding sources; and	ed every five years to be eligible for certain safety
WHEREAS, Lane County applied for, Highway Administration Safe Streets and Roa	, and received, grant funding through the Federal design for All program to update the TSAP; and
WHEREAS, staff has prepared an upd	lated TSAP.
NOW, THEREFORE, the Board of Capproval of the 2025 TSAP, attached hereto a	County Commissioners of Lane County ORDERS as Exhibit A.
ADOPTED this day of	, 2025.
	David Loveall, Chair
L	ane County Board of Commissioners

LANE COUNTY

TRANSPORTATION SAFETY ACTION PLAN

October 2025

ACKNOWLEDGMENTS

LANE COUNTY PROJECT MANAGEMENT TEAM • AND TASK FORCE MEMBERS

Becky Taylor •

SENIOR TRANSPORTATION
PLANNER / PROJECT MANAGER

Cassidy Mills •

TRANSPORTATION PLANNING SUPERVISOR

Taylor Carsley

TRANSPORTATION
PLANNING SENIOR
ENGINEERING ASSOCIATE

Aaron Staniak •

TRANSPORTATION PLANNING ENGINEERING ASSOCIATE

Shashi Bajracharya

TRAFFIC ENGINEER

Nate Riddle

TRAFFIC OPERATIONS ENGINEER

Ryan Sisson

DESIGN SERVICES
PROGRAM MANAGER

Garet Skelton

ENGINEERING ANALYST

Sergeant Colt Parker SHERIFF'S OFFICE

Deputy Mike Fawver SHERIFF'S OFFICE

Dan Hurley

PUBLIC WORKS DIRECTOR

Sasha Vartanian

ENGINEERING AND CONSTRUCTION SERVICES MANAGER

Orin Schumacher

ROAD MAINTENANCE MANAGER

Luis Pimentel and Michelle Hampton

PUBLIC HEALTH PREVENTION

Jo Holly

PUBLIC WORKS SAFETY COORDINATOR

Steven Thiel

COUNTY COUNSEL

DKS ASSOCIATES

Lacy Brown

Travis Larson

Harshala Sardar

Scott Mansur

Tasmyn Petlansky

Hallie Turk

Melissa Abadie

Vanessa Choi-Clark

Kathryn Miller

TOOLE DESIGN

Adrian Witte

Talia Jacobson

Kerry Aszklar

Ryan O'Hara

Jacob Nigro

CONTENTS

CALL TO ACTION	1
INTRODUCTION	2
ABOUT LANE COUNTY	3
RURAL SAFETY CHALLENGES	3
WHY DOES LANE COUNTY NEED AN UPDATED SAFETY PLAN?	5
TSAP FRAMEWORK AND DEVELOPMENT	6
A SAFE SYSTEM APPROACH	7
SAFE SYSTEM APPROACH PRINCIPLES	7
SAFE SYSTEM APPROACH OBJECTIVES	8
PLAN DEVELOPMENT	9
ENGAGEMENT1	0
SAFETY TRENDS AND PRIORITIES	3
FATAL AND SERIOUS INJURY CRASH TRENDS	4
HIGH CRASH LOCATIONS	15
EMPHASIS AREAS1	9
SAFETY STRATEGIES, PROJECTS, AND IMPLEMENTATION	25
SYSTEMIC INFRASTRUCTURE STRATEGIES	27
SYSTEMIC NON-INFRASTRUCTURE STRATEGIES	8
IMPLEMENTATION GUIDE	.4
HIGH PRIORITY PROJECTS	6
APPENDIX	71

LIST OF FIGURES

FIGURE 1.	LANE COUNTY STUDY AREA MAP	. 4
FIGURE 2.	LOCATION OF FATAL AND SERIOUS INJURY CRASHES (2018 TO 2022)	15
FIGURE 3.	HIGH PRIORITY NETWORK	18

LIST OF TABLES

TABLE 1.	FATAL AND SERIOUS INJURY CRASH RATES BY COUNTY	!
TABLE 2.	COMMUNITY ENGAGEMENT IN THE 2025 TSAP	. 12
TABLE 3.	LIST OF CURRENT POLICIES, STANDARDS, AND PROCESSES	40
TABLE 4.	LIST OF FEDERAL AND STATE SAFETY FUNDING PROGRAMS FOR LOCAL AGENCIES	45
TABLE 5.	HIGH PRIORITY PROJECTS FOR PURSUING GRANTS	47

This 2025 Lane County Transportation Safety Action Plan (TSAP) reinforces the County's ability and commitment to work Toward Zero Deaths on our roadways. The Board of County Commissioners turned this commitment into policy in 2017, with the adoption of the County's first TSAP. The **2025 TSAP** strengthens that commitment by establishing a goal of achieving zero roadway deaths and serious injuries by 2045.

This plan identifies a **High Priority Network** - a system of County-maintained roads and intersections with the highest risk of fatal and serious injury crashes, and **Safety Emphasis Areas** – the crash types and contributing factors leading to people being killed and seriously injured. The plan outlines a range of short-, mid-, and long-term engineering strategies designed to reduce these risks and create a transportation system that is more forgiving of inevitable human error. Projects identified through this process will be eligible for state and federal grants, including future implementation funding through the USDOT **Safe Streets and Roads for All (SS4A)** program, an opportunity to construct these life-saving projects.

Since adoption of the **2017 TSAP**, risky driving behaviors—particularly speeding and impaired driving involving drugs and alcohol—have worsened. While roadway design can influence driving speeds, addressing impaired driving requires broader behavioral change, which is far more complex. Recognizing this, the **2025 TSAP** reinforces the enforcement and education strategies recommended in 2017. However, limited resources continue to hinder the implementation of these strategies.

The updated plan acknowledges these challenges and continues to advocate for sufficient education and enforcement funding. By focusing efforts within the High Priority Network, the County can maximize its impact—targeting engineering solutions, public education campaigns, and saturation patrols where they will be most effective to respond to crash history and community input.

Ultimately, the **2025 TSAP** provides a clear, evidence-based path toward reducing fatal and serious injury crashes on County roadways. It aligns with the **Safe System Approach** and supports the goals of both the **2021 Oregon Transportation Safety Action Plan** and the **U.S. Department of Transportation's SS4A program**, all of which stress the responsibility of road authorities to design a transportation system that anticipates and accommodates human error.

Vision: A transportation system free of crash-related deaths and serious injuries. Mission: To work toward zero deaths and serious injuries on County-maintained roads.

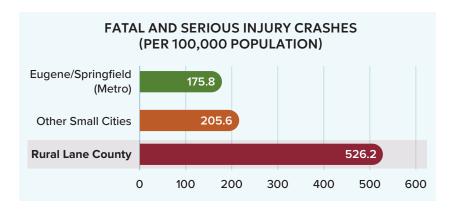
Goal: Achieve zero deaths and serious injuries by 2045.

Everyone makes mistakes—but no one should die or suffer lifechanging injuries because of them. Not on our roadways. Not if we can help it. And we can. Most crashes are preventable. Together, we can take meaningful action to save lives.

CHAPTER 1

INTRODUCTION

INTRODUCTION


ABOUT LANE COUNTY

Lane County spans more than 4,600 square miles in western Oregon, stretching from the Pacific Coast to the crest of the Cascade Range. The south end of the Willamette Valley is geographically centered in Lane County, a region home to the majority of the County's residents that is also known for its agricultural productivity. In 2024, Lane County's population was estimated at over 380,000 residents. ¹

Within Lane County, there are over 43 rural communities and 12 incorporated cities, including Eugene and Springfield which comprise Oregon's third-largest metropolitan area. Outside this metro area, Lane County cities and communities are largely rural in nature. Urban growth boundaries (UGBs) surround these communities allowing rural farm and forest uses to dominate the landscape adjacent to population centers. The transportation network generally reflects this land development pattern, and oftentimes this means a limited (or no) transitional area between urban and rural roadways. Lane County's diverse geography, tourism, and a growing population, combined with many miles of rural, high-speed roads, and urban-rural interfaces present unique challenges for ensuring safe mobility.

RURAL SAFETY CHALLENGES

Despite fewer people living in the rural area, most fatal and serious injury crashes are occurring in rural Lane County. As shown in the figure on the right, the rate of fatal and serious injury crashes per population on rural roadways is 3x higher than in the Eugene-Springfield area, and 2.5x higher than in other smaller cities.

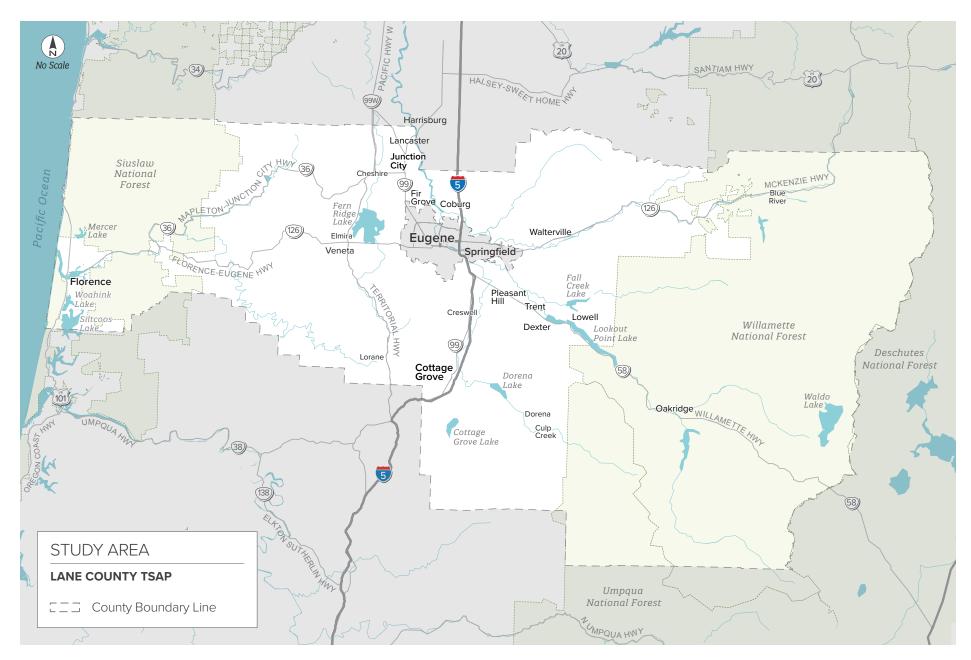
In addition to this disproportionate share of high severity crashes, people living in rural areas often have fewer transportation options (i.e., limited opportunities to walk, bike, or take transit) and must travel longer distances to work, school, and services, so they are more impacted by roadway safety. According to a recent county survey, people over 65 years of age, low-income households, and people with disabilities are among the rural county's most prominent underserved communities.²

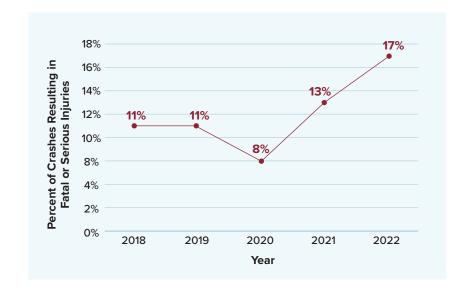
This TSAP focuses on the needs of rural Lane County. The study area includes all County-owned roads outside the Eugene and Springfield urban growth boundaries (UGBs). Within this rural geography, the County maintains about 1,300 miles of roadways (Figure 1).

This TSAP focuses on rural Lane County. Transportation safety needs within the Eugene-Springfield metro area are considered in the Central Lane Planning Organization's Safety and Security Plan, as well as the City of Eugene's Safety Action Plan and Vision Zero initiative.

^{1 2004} Certified Population Estimates. Portland State University Population Research Center. July 1, 2024.

² Community-Powered Bicycle Projects: Survey Results. Lane County, April 2023.




FIGURE 1. LANE COUNTY STUDY AREA MAP

WHY DOES LANE COUNTY NEED AN UPDATED SAFETY PLAN?

Traffic crashes are a leading cause of death in the United States. Each year, over 40,000 people are killed while driving, walking, and biking in the United States, and that number has continued to increase over the last decade³. In Oregon, the number of people killed and seriously injured increased by 78 percent between 2017 and 2022, even though the total number of crashes (all severities) per year dropped by 22 percent during the same timeframe⁴. In other words, the overall number of crashes is decreasing, but crashes that do occur are more likely to result in severe injury or death.

Lane County recognizes traffic safety as a public health issue and prioritizes preventing fatal and serious injury crashes. Despite Lane County's committed goal of zero deaths and serious injuries and it's adoption of a TSAP in 2017, the proportion of crashes resulting in fatal or serious injury is growing. In 2018, 11% of reported crashes on County roads led to death or life-altering injury. By 2022, that rate increased to 17%. Most of these crashes were preventable, and the need for preventative action is urgently growing.

This problem is not unique to Lane County. Statewide and around the country, fatal and serious injury crashes are on the rise. However, compared to peer counties in Oregon, Lane County's fatal and serious injury crash rate is among the highest (see **Table 1**).

Fatal and serious injury crashes have devastating impacts on families and communities. Without intervention, Lane County will continue to experience preventable loss of life and serious injury on its rural road system, especially as infrastructure ages and risky driving behaviors like speeding and impairment persist.

TABLE 1. FATAL AND SERIOUS INJURY CRASH RATES BY COUNTY

COUNTY	NUMBER OF FATAL AND SERIOUS INJURY CRASHES (2018-2022)	2024 POPULATION ESTIMATE	FATAL AND SERIOUS INJURY CRASHES PER 100,000 POPULATION
MARION	1,026	247,798	414.1
LANE	1,045	382,771	273.0
MULTNOMAH	2,004	800,227	250.4
CLACKAMAS	866	426,567	203.0
WASHINGTON	1,103	611,389	180.4

³ NHTSA Road Safety Dashboard, www.nhtsa.gov.

⁴ ODOT Crash Analysis and Reporting Unit Crash Data Viewer, https://www.oregon.gov/odot/Data/Pages/Crash-Data-Viewer.aspx.

CHAPTER 2

TSAP FRAMEWORK AND DEVELOPMENT

TSAP FRAMEWORK AND DEVELOPMENT

A SAFE SYSTEM APPROACH

Zero is our goal. A Safe System is how we will get there.

Toward Zero Deaths is the national strategy to eliminate deaths and serious injuries from traffic crashes. This strategy utilizes a Safe System Approach to reduce fatal and serious injury crashes. It acknowledges a shared responsibility for creating and maintaining a transportation system designed with built-in redundancy. It also recognizes the vulnerability of road users as humans who make mistakes, focusing on anticipating error and minimizing harmful crash forces. Above all, the Safe System Approach prioritizes the protection of human life, with the ultimate goal to eliminate death and serious injury.

SAFE SYSTEM APPROACH PRINCIPLES

Humans Make Mistakes

People will inevitably make mistakes; the transportation system should be designed to accommodate certain types of human errors.

Humans Are Vulnerable

Humans can only tolerate a certain level of forces before serious injury or death occurs; the transportation system should be designed to reflect the physical limits of the human body.

Responsibility is Shared

Every individual plays an important role in preventing fatalities and serious injuries.

Safety is Proactive

Utilize proactive tools instead of waiting for crashes to occur.

Redundancy is Crucial

If one element fails, the other elements should be robust enough to still protect people.

SAFE SYSTEM APPROACH OBJECTIVES

Safer Road Users

Encourage safe and responsible behaviors.

Safer Vehicles

Enhance vehicle design and features to prevent crashes and minimize impact forces.

Safer Speeds

Promote safer speeds in all roadway environments through design, speed limit setting, education, outreach, and enforcement.

Safer Roads

Design the transportation system to mitigate for human mistakes, account for injury intolerances, and facilitate safe travel of vulnerable road users.

Post-Crash Care

Enhance the quality and timeliness of emergency services, create a safe working environment for first responders, and prevent secondary crashes.

A key tenant of the Safe System Approach is the importance of building layers of redundancy to keep people safe. By investing in multiple forms of protection, we ensure that if one part of the system fails, there are more opportunities to either prevent the crash from occurring or minimize the severity of injuries that result.

This TSAP uses the Safe System Approach as the guiding framework for identifying safety needs and for matching those needs to a set of effective, holistic solutions that have the best chance of preventing death and serious injury on our roadways.

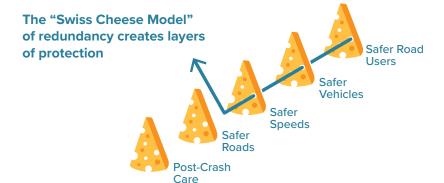


Image Source: FHWA

PLAN DEVELOPMENT

The development of this TSAP focused on four primary phases – **Understanding** the data, identifying high priority safety **Needs**, selecting and prioritizing **Solutions**, and establishing a **Plan of Action**. Each stage of the process was informed by the data, by our Task Force, and by community feedback.

The County's Fatal Crash Investigation Team (FCIT) served as the Task Force for this project. The team includes representatives from Public Health, Sheriff's Office, County Counsel, and Public Works. The Task Force met monthly and provided valuable input throughout the development of this TSAP.

UNDERSTANDING

- Field Reviews and Inventory
- Safety Data Analysis
- Equity Evaluation
- Review of Policies, Standards, and Planned Projects
- Community Feedback from Past Plans

TIMELINE

Summer 2024 - Fall 2024

NEEDS

- High Injury Network
- High Risk Network
- High Priority Network
- Emphasis Areas

TIMELINE

Fall 2024 - Winter 2025

SOLUTIONS

- Hotspot and Systemic Projects, Strategies, and Policies
- Safe System Toolbox
- Community Workshops

PLAN OF ACTION

- Performance Measures
- Prioritized Projects
- Funding Guide
- Final TSAP

TIMELINE

Winter 2025 - Summer 2025

TIMELINE

Summer 2025 - Fall 2025

ENGAGEMENT

The 2025 TSAP is shaped by feedback, both historic and recent, and builds on a foundation of public engagement that honors local knowledge and lived experience.

Historic Engagement Efforts

Since 2015, Lane County has maintained an open dialogue with the public on transportation safety through several major planning initiatives:

• 2017 Transportation Safety Action Plan:

This plan laid the groundwork for a Safe System Approach in Lane County. It redefined traffic safety as a preventable public health issue and introduced coordinated engineering, education, and enforcement strategies. The plan was guided by a comprehensive multi-agency advisory committee.

• 2017 Transportation System Plan (TSP) Update:

This plan featured stakeholder committees, workshops across seven cities, and a focus on safety through the Roadway Health Assessment. The TSP established a goal of eliminating fatalities and reducing severe injuries, and it included specific policies aligning safety with funding and interagency coordination.

• 2022 Bicycle Master Plan (BMP):

The plan engaged diverse communities through stakeholder interviews, bilingual open houses, and targeted outreach. A key finding was the overwhelming lack of safe bicycling infrastructure, particularly in rural and underserved areas.

2023 Community Survey:

This initiative was one of Lane County's largest community engagement efforts to date. Over 3,600 rural residents responded to a countywide survey focused on road conditions and personal experience. Their input highlighted a clear demand for multimodal improvements, especially those that create space and protection for vulnerable road users.

The community's message from these historic planning efforts is clear: Lane County roads could better serve our community. Specifically, Lane County roads need multi-modal safety improvements. The greatest challenge in meeting this need is the lack of funding. The 2025 TSAP will increase the future opportunities for the County to pursue state and federal grants for implementation.

2025 TSAP Engagement Efforts

A key challenge in pursuing grant funding is uncertainty around support from affected property owners. Major roadway changes require public notice and a formal opportunity for community comment at public hearings. In the past, opposition from property owners has stopped projects before they advanced. To ensure the recommendations in the 2025 TSAP are both actionable and grant-ready, Lane County initiated direct engagement with property owners most likely to be impacted by future safety projects.

The prioritization of the 2025 TSAP's High Priority Network (HPN) incorporated, in part, what we heard from the community - both historic community feedback as well as TSAP-specific feedback collected through a series of in-person community meetings in Summer 2025. Invitations were mailed directly to people living or owning property adjacent to the identified HPN corridors. Meetings were held in Elmira, Springfield, Creswell, and Coburg, with approximately 60 people attending.

Kids are welcome!
Free pizza to the first 50 participants.

Over 1,823 people said they felt unsafe traveling on County roads in a 2023 community survey of rural households in Lane County. Thanks to Safe Streets and Roads for All (SS4A) grant funding, Lane County is updating its Transportation Safety Action Plan (TSAP). The TSAP identifies a High Priority Network (HPN) of County roads with the most fatal and serious injury crashes and recommends roadway changes to reduce those crashes.

In western Lane County, the HPN includes: Warthen Road, Territorial Hwy., and Clear Lake Road. At this community meeting, Lane County will share plans for improving safety on these roads. Your input will help Lane County make better decisions about where to focus limited resources to make the biggest difference.

Staff Contact: Becky Taylor, Senior Transportation Planner

Email: becky.taylor@lanecountyor.gov Phone: 541-682-6932

US Mail: Lane County Public Works, 3040 N. Delta Highway, Eugene, OR 97408

Ulaid guade here directho a servicios legislatos gradutos al tene un concolimierto limitado en inglas Para más información, favor de comunicame com Beoly Taylor, planticadora principal de transporte al 541 6826932 o Beoly Taylor <u>planticador un presentativo</u> 如果那麼過去了來了 多,說了解解情,這眼景,高級亞通過如何與基本數(电话,541.6826932、电路books planticalization procursivos govern WHEN: July 22, 2025 5:30—7:30 PM

WHERE: Elmira Elementar

Elmira Elementary 8890 Territorial Hwy. Elmira

WHY:
Help us reduce fatal and
serious injury crashes on
Warthen Rd.,
Territorial Hwy.,
& Clear Lake Rd.

Thank you!

Several key themes emerged from this outreach, including:

Residents are **most concerned** about risky driving behaviors like speeding and distraction, and there is widespread frustration with the lack of traffic enforcement

There was **broad support** for low-cost improvements (e.g., rumble strips, signage, pavement markings)

There was **mixed support** for largescale changes (e.g., shoulder widening, roundabouts), often linked to concerns about property impacts

In response to this feedback, this TSAP is tailored toward low-cost safety enhancements where feasible, and it emphasizes the need for further engagement and coordination before undertaking large reconstruction projects.

TABLE 2. COMMUNITY ENGAGEMENT IN THE 2025 TSAP

WHAT WE HEARD	HOW THE TSAP RESPONDS
Concerns about speeding and limited enforcement	Recommends evaluating speed limits and installing speed feedback signs; acknowledges resource gaps for law enforcement
Support for low-cost, visible countermeasures	Includes signage, pavement marking, and mumble strips in short-term recommendations
Concerns about expensive roadway projects	Recommends further outreach and feasibility studies before large investments

CHAPTER 3

SAFETY TRENDS AND PRIORITIES

SAFETY TRENDS AND PRIORITIES

Selecting the most effective safety strategies relies on an accurate understanding of why fatal and serious injury crashes are happening in the first place. The foundation of this TSAP is centered around a comprehensive, data-driven analysis of historical crash data (2018 to 2022)⁵, an inventory of the County road system, and an evaluation of risk factors that are known to increase the likelihood of a severe crash occurring.

FATAL AND SERIOUS INJURY CRASH TRENDS

Fatal or serious injury crashes

Average fatal or serious injury crashes per year

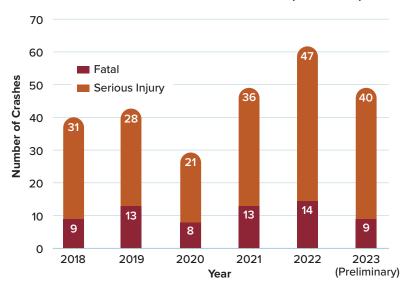
Preliminary data indicates that another 49 fatal or serious injury crashes occured in 2023.

MOST COMMON CRASH TYPES:

Road departure (Fixed object)

- 12%

Lane departure (Head-on)


==== **16**%

Turning at intersections or driveways

₱ 6%

Lane or road departure (Single overturned vehicle)

FATAL AND SERIOUS INJURY CRASHES (PER YEAR)

TOP CONTRIBUTING FACTORS:

Alcohol impairment

65+ 25%

Drivers age 65 and older

28%

Speeding

17%

Drug impairment

OVERREPRESENTED IN FATAL AND SERIOUS INJURY CRASHES:

Alcohol and drug impairment

Speeding

Drivers age 65 and older

Pedestrians, bicyclists, and motorcyclists

⁵ Following best practices, this is the most recent five years of official ODOT crash data at the time the data analysis was completed.

HIGH CRASH LOCATIONS

Figure 3 highlights locations in the study area where fatal and serious injury crashes occurred from 2018 to 2022. These hotspots informed the development of the High Injury Network.

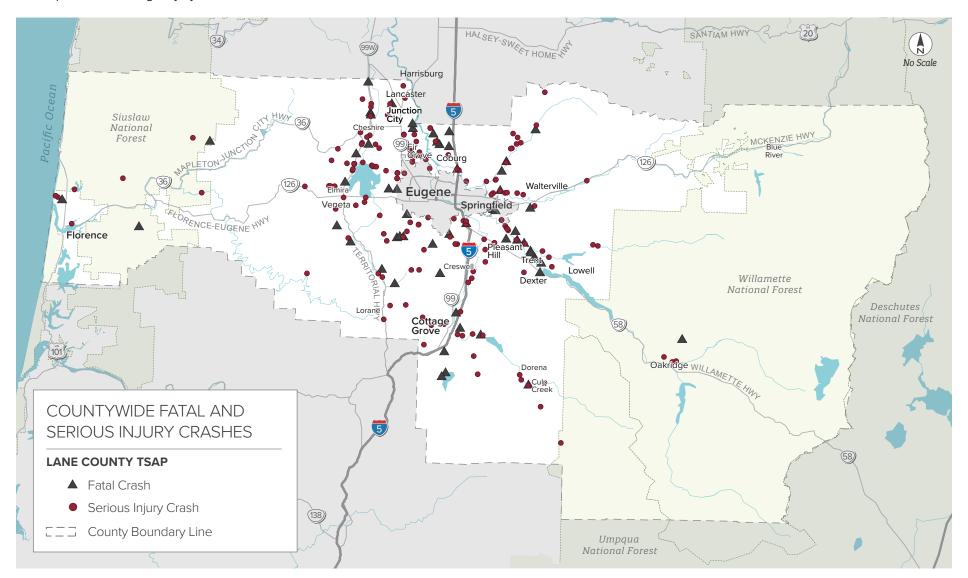
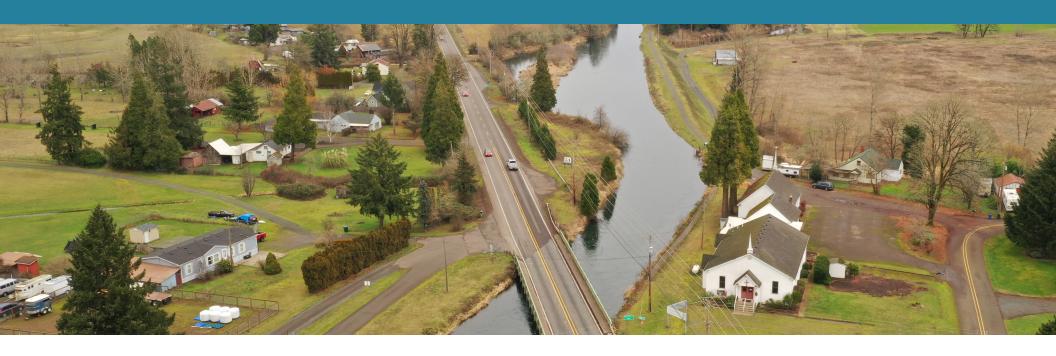
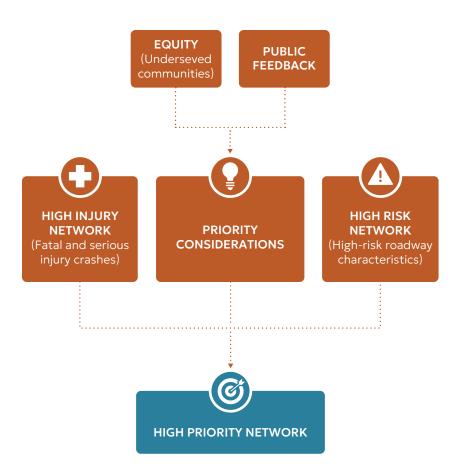



FIGURE 2. LOCATION OF FATAL AND SERIOUS INJURY CRASHES (2018 TO 2022)

Underserved Communities

This TSAP strives to understand how Lane County's underserved communities are affected by road safety needs. Demographic characteristics such as age, income, and disability often shape how people use the transportation network and the risks they face on the roadway. Equal access to safe transportation is only possible when the system accounts for these differences. In communities where infrastructure is lacking or crashes are more frequent, residents often face disproportionate risks and fewer safe options to reach jobs, schools, and services.

To ensure that limited resources address the areas of greatest need, this TSAP identified where residents may face greater barriers to safe, reliable travel⁶. Roadways that serve areas where crashes may have a more significant impact on residents' well-being, economic opportunity, and access to services were factored into the prioritization framework for the High Priority Network. A summary of the underserved communities analysis is included in the appendix.


High Injury Network

The High Injury Network (HIN) is comprised of roadways and intersections where high severity crashes are the most concentrated. HIN corridors were selected based on crash frequency and severity over the five year study period.

Notable HIN corridors include:

- Territorial Highway (north of Veneta)
- River Road (north of Eugene)
- Clear Lake Road (west of Eugene)
- Coburg Road (north of the McKenzie River)
- Jasper–Lowell–Pengra corridor (east of Springfield)

⁶ The two data sources used for this evaluation were the Oregon Social Equity Index (SEI), developed by the Oregon Health Authority and ODOT, and the U.S. DOT's Equitable Transportation Community (ETC) Explorer (no longer available).

High Priority Network

This High Priority Network (HPN), which is comprised of roads with the highest potential for effective safety improvements, was developed by blending the findings of these data-informed safety evaluations.

- High density of fatal and serious injury crashes (the HIN)
- Presence of high-risk roadway features (the HRN);
- Systemic risk based on Emphasis Areas
- · Community concerns

The HPN is not a boundary on where safety matters and where it does not. Instead, it is a tool to direct investments to places where safety interventions can be most immediately effective, grant-eligible, and responsive to community concern.

A map of the 22 HPN corridors is shown in **Figure 3**, and detailed summary sheets of each corridor are included in the next chapter.

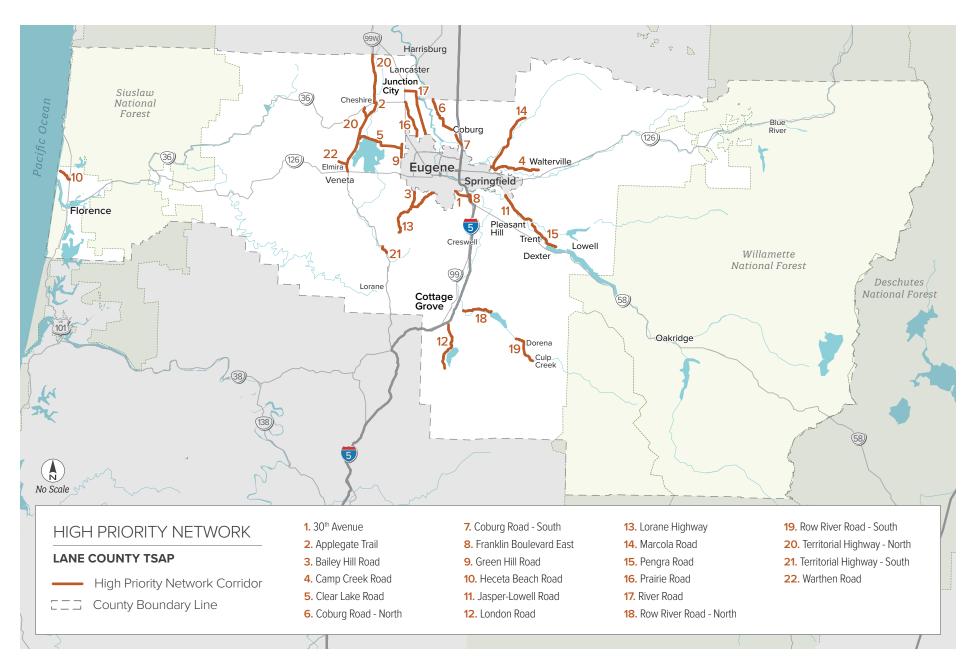


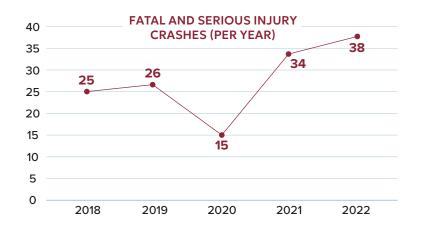
FIGURE 3. HIGH PRIORITY NETWORK

EMPHASIS AREAS

Like most public agencies, Lane County has limited resources that must be strategically invested to address the most urgent risks and most consistent community concerns. The projects and strategies in this TSAP intentionally target the most severe crash attributes, highest-risk road features, and the highest-priority locations where investments will have the greatest impact on reducing deaths and serious injuries.

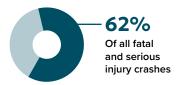
The following five emphasis areas reflect the factors most frequently involved in fatal and serious injury crashes in Lane County, as well

as long-standing public concerns. Most importantly, each emphasis area corresponds to safety strategies that measurably reduce crash risk. Structuring strategies and projects around these emphasis areas helps ensure that Lane County's investments are both locally relevant and aligned with proven safety outcomes. The following sections summarize the fatal and serious injury crash trends for each emphasis area. It is important to note that a single crash can be attributed to multiple emphasis areas (e.g., a driver who is impaired and speeding that leaves the roadway).



ROAD OR LANE DEPARTURES

DESCRIPTION


Road or lane departure crashes occur when a vehicle veers out of its travel lane and leaves the roadway or crosses into opposing lanes. These crashes often involve a single vehicle striking a fixed object or rolling over. They are especially common on rural roads with curves, steep grades, and/or narrow shoulders.

ROAD OR LANE DEPARTURE CRASH STATISTICS (FATAL AND SERIOUS INJURY ONLY)

FACTORS SHOWN BELOW ARE NOT MUTUALLY-EXCLUSIVE

ATTRIBUTED TO

People killed or seriously injured each year on average

PERCENT OF ROAD OR LANE DEPARTURE CRASHES THAT ALSO INVOLVED

OTHER NOTABLE FACTORS

71% Struck a fixed object (mostly ditches and trees)

15% Struck another vehicle head-on

51% On horizontal curve

17% On vertical grade

30% On wet or icy pavement

EFFECTIVE STRATEGIES FOR THIS EMPHASIS AREA⁷

CENTERLINE AND EDGELINE RUMBLE STRIPS

Up to **45%** crash reduction

REMOVE OR RELOCATE OBJECTS AND DITCHES NEAR THE ROADSIDE

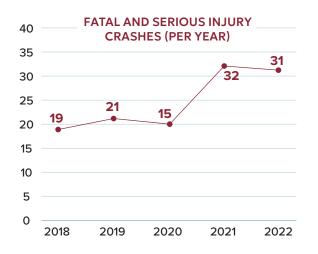
Up to **44%** crash reduction

CURVE WARNING TREATMENTS (INCLUDES WARNING SIGNS, CHEVRONS, DELINEATORS, SPEED FEEDBACK SIGNS)

Up to 25% crash reduction

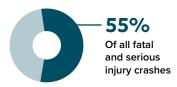
INCREASED ENFORCEMENT TARGETING SPEEDING AND IMPAIRED DRIVING

EDUCATION AND AWARENESS CAMPAIGNS FOCUSED ON SPEEDING AND IMPAIRED DRIVING

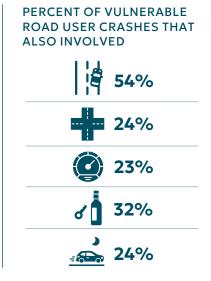

7 See appendix for a comprehensive list of applicable strategies.

VULNERABLE ROAD USERS (VRUS)

DESCRIPTION


Vulnerable road users (VRUs) include people walking, biking, or riding motorcycles, as well as drivers who are under 21 or 65 and older. Bicyclists, pedestrians, and motorcyclists lack the protection of a vehicle frame and are more likely to be seriously injured or killed in a crash, particularly on higher-speed roadways. Younger drivers may lack experience and road knowledge and are more likely to engage in risky behaviors, while aging drivers have experience and knowledge but may have other limitations as their physical, visual, and cognitive capabilities diminish with age.

VULNERABLE ROAD USER CRASH STATISTICS (FATAL AND SERIOUS INJURY ONLY)


FACTORS SHOWN BELOW ARE NOT MUTUALLY-EXCLUSIVE

ATTRIBUTED TO

People killed or seriously injured each year on average

VULNERABLE ROAD USER TYPES

16% Young drivers involved

24% Aging drivers involved

11% Motorcyclists involved

3% Bicyclists involved

6% Pedestrians involved

EFFECTIVE STRATEGIES FOR THIS EMPHASIS AREA⁸

AGING DRIVER EDUCATION AND TRAINING PROGRAMS

\$ Low cost

Moderate benefit

EDUCATION AND AWARENESS
CAMPAIGNS (FOCUSED ON YOUNG
DRIVERS, RISKY BEHAVIORS, AND
DRIVERS SHARING THE ROAD WITH
OTHER MODES)

S Low cost

Moderate benefit

WIDER SHOULDERS OR BICYCLE LANES

Up to **53%** crash reduction

S High cost

SPEED FEEDBACK SIGNS

Up to 10% crash reduction

INTERSECTION VISIBILITY TREATMENTS
(INCLUDES DELINEATORS, HIGH

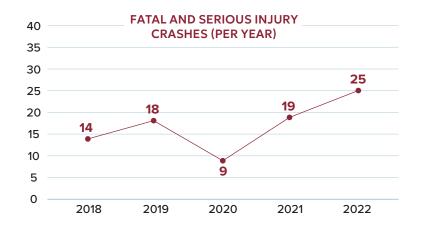
Low benefit

Up to **30%**

VISIBILITY SIGNING)

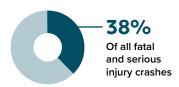
S Low cost

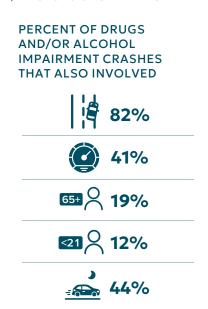
8 See appendix for a comprehensive list of applicable strategies.


VISIBILITY PAVEMENT MARKINGS, HIGH

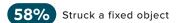
DRUGS AND/OR ALCOHOL IMPAIRMENT

DESCRIPTION

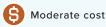

This emphasis area includes crashes where drugs and/or alcohol were reported to have affected a driver's ability to operate a vehicle safely.


DRUGS AND/OR ALCOHOL INVOLVED CRASH STATISTICS

(FATAL AND SERIOUS INJURY ONLY) FACTORS SHOWN BELOW ARE NOT MUTUALLY-EXCLUSIVE


REPORTED IN

People killed or seriously injured each year on average


OTHER NOTABLE FACTORS

EFFECTIVE STRATEGIES FOR THIS EMPHASIS AREA⁹

HIGH VISIBILITY SATURATION PATROLS

0

High benefit

SUBSTANCE ABUSE INTERVENTION AND TREATMENT PROGRAMS

High cost

High benefit

CENTERLINE AND EDGELINE RUMBLE STRIPS

Up to **45%** crash reduction

Low cost

High benefit

REMOVE FIXED OBJECTS WITHIN 16 FEET OF ROADWAY

Up to **44%** crash reduction

8

Moderate cost

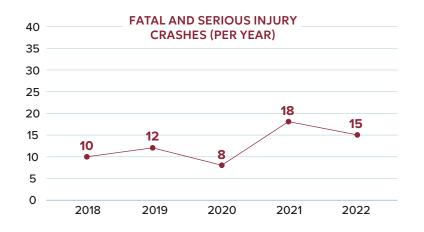
High benefit

CURVE WARNING TREATMENTS

(INCLUDES WARNING SIGNS, CHEVRONS, DELINEATORS, SPEED FEEDBACK SIGNS)

Up to **25%** crash reduction

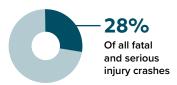
Low cost


High benefit

9 See appendix for a comprehensive list of applicable strategies.

SPEED-INVOLVED

DESCRIPTION


Speed-involved includes crashes that both result from drivers exceeding the posted speed limit and driving too fast for conditions. Higher speeds reduce a driver's ability to avoid collisions and increase the severity of crashes when they occur. In Lane County, speeding is a top crash factor across all roadway types, and it frequently overlaps with other emphasis areas.

SPEEDING CRASH STATISTICS (FATAL AND SERIOUS INJURY ONLY)

FACTORS SHOWN BELOW ARE NOT MUTUALLY-EXCLUSIVE

ATTRIBUTED TO

People killed or seriously injured each year on average

OTHER NOTABLE FACTORS

29% Struck another vehicle or road user

58% On a curve

17% On a grade

33% On wet or icy pavement

EFFECTIVE STRATEGIES FOR THIS EMPHASIS AREA¹⁰

SPEED FEEDBACK SIGNS

Up to 10% crash reduction

Low cost

Low benefit

INCREASED ENFORCEMENT TARGETING SPEED AND IMPAIRED DRIVING

Moderate cost

High benefit

EDUCATION AND AWARENESS CAMPAIGNS (FOCUSED ON SPEED AND IMPAIRED DRIVING)

Low cost

Moderate benefit

CENTERLINE AND EDGELINE RUMBLE STRIPS

Up to **45%** crash reduction

Low cost

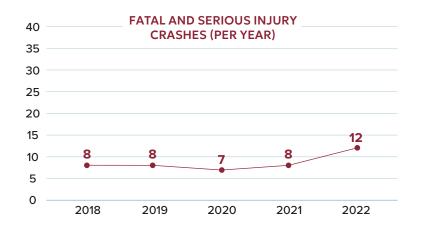
High benefit

REMOVE FIXED OBJECTS WITHIN 16 FEET OF THE ROADWAY

Up to **44%** crash reduction

Moderate cost

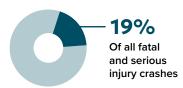
High benefit


Emerging treatment: Optical speed bars – most effective on approaches to unexpected conditions (sharp curves, isolated intersections) - should be used sparingly. Low cost, unknown benefit.

10 See appendix for a comprehensive list of applicable strategies.

INTERSECTIONS

DESCRIPTION


Intersections are high-conflict locations where two or more roadways meet. In rural areas, intersections commonly pose visibility challenges or lack traffic control devices. In small towns or unincorporated communities, they are a place where drivers find their vehicles in conflict with each other as well as bicyclists and pedestrians.

INTERSECTION CRASH STATISTICS (FATAL AND SERIOUS INJURY ONLY)

FACTORS SHOWN BELOW ARE NOT MUTUALLY-EXCLUSIVE

ATTRIBUTED TO

People killed or seriously injured each year on average

PERCENT OF VULNERABLE **ROAD USER CRASHES THAT ALSO INVOLVED** 65± × 47%

OTHER NOTABLE FACTORS

Involved a driver 10% passing the stop sign

EFFECTIVE STRATEGIES FOR THIS EMPHASIS AREA¹¹

ROUNDABOUTS

Up to **82%** crash reduction

LEFT TURN LANES

Up to 48% crash reduction

Moderate cost

High benefit

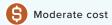
INTERSECTION VISIBILITY TREATMENTS (INCLUDES DELINEATORS, HIGH VISIBILITY PAVEMENT MARKING, HIGH **VISIBILITY SIGNING)**

Up to 30% crash reduction

High benefit

THROUGH-ROUTE ACTIVATED WARNING SYSTEM

Up to 27% crash reduction



AGING DRIVER EDUCATION AND TRAINING PROGRAMS

AGING DRIVER LICENSING TESTING RESTRICTIONS



11 See appendix for a comprehensive list of applicable strategies.

CHAPTER 4

SAFETY STRATEGIES, PROJECTS, AND IMPLEMENTATION

SAFETY STRATEGIES, PROJECTS, AND IMPLEMENTATION

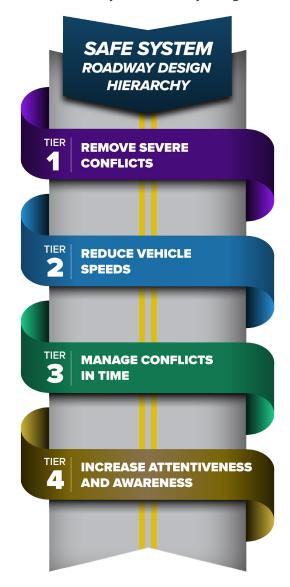
Working Toward Zero Deaths acknowledges that eliminating roadway deaths and serious injuries requires action. Doing nothing is not an option. At the same time, this TSAP acknowledges that Lane County has very limited resources, so it identifies actions that are most critical to reversing the growing problem of roadway fatalities and serious injuries. The following strategies build upon existing strengths and will help the County focus on high-benefit efforts, track progress, and make informed decisions to improve safety in our community.

The recommendations in this plan are not prescriptive or fixed. They provide a foundation for funding applications and design work, and will evolve as conditions change, new funding opportunities arise, projects are delivered, and additional community input is gathered. In that way, this TSAP is not just a snapshot of current conditions, but a tool Lane County can use to make steady, intentional progress toward safer roads.

Our understanding of safety strategies, their effectiveness, and best practices for implementation are continually evolving. The following state and federal resources may be useful when identifying safety strategies for a specific location, underlying risk, or crash pattern:

- FHWA Proven Safety Countermeasures
- FHWA Proven Safety Countermeasures in Rural Communities
- NHTSA Countermeasures that Work
- USDOT National Roadway Safety Strategy
- ODOT Crash Reduction Factor Manual
- · Safe System Roadway Design Hierarchy

SYSTEMIC INFRASTRUCTURE STRATEGIES


The priority infrastructure strategies are aimed at reducing the frequency and severity of roadway departure and intersection crashes, which are the leading fatal and serious injury crash types on County rural roads. Those strategies are listed below. A broader set of infrastructure strategies is included in the Safety Toolbox Appendix. These strategies are applied to the HPN more specifically to guide implementation in the locations of elevated risk of fatal and serious injury crashes. These strategies should also be applied to all County projects, as funding allows.

To assist agencies with prioritizing and implementing engineering and infrastructure-based safety strategies in alignment with the Safe System Approach, FHWA developed the Safe System Roadway Design Hierarchy. Lane County will apply the Roadway Design Hierarchy when developing projects by considering Tier 1 solutions first. When Tier 1 solutions are not feasible, the County will apply countermeasures targeting Tiers 2, 3, and 4, alone or in combination. The implementation of specific solutions is highly dependent on site characteristics and contingent upon available funding.

The following should be considered in all County projects, as many of these strategies can be incorporated without significant additional cost. Given existing funding constraints, pavement preservation and safety improvements are high priorities that need to be balanced.

Each countermeasure includes a brief description, its connection to the Safe System Approach and roadway design hierarchy, the estimated safety benefits, and an estimated cost in 2025 dollars.

Source: FHWA Safe System Roadway Design Hierarchy

SINUSOIDAL RUMBLE STRIPS

Rumble strips provide both audible and vibratory feedback when driven on, which alerts drivers to realign themselves in their respective lane. Rumble strips are discouraged in residential areas due to the noise impacts on neighboring residents. Consider maintenance needs and agency resources prior to installation.

 ${\it lmage Source: https://safety.fhwa.dot.gov/roadway_dept/pavement/rumble_strips/general-information.cfm}$

SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 4: Increase Attentiveness and Awareness
ESTIMATED CRASH REDUCTION	Centerline – 23% reduction in roadway and lane departure crashes and 45% reduction in head-on and sideswipe crashes Shoulder – 22% reduction in roadway and lane departure crashes ¹²
ESTIMATED COST	\$5,000 per mile (per side)

¹² Oregon Department of Transportation. (2023). Oregon crash reduction factor manual. Oregon Department of Transportation. https://www.oregon.gov/odot/Engineering/ARTS/CRF-Manual.pdf).

SAFETY EDGE TREATMENTS

Safety edge is a pavement edge sloped at an angle (30 to 35 degrees) to make it easier for a driver to safely re-enter the roadway after inadvertently driving onto the shoulder. It minimizes the edge change in pavement elevation by providing a more manageable recovery area for drivers departing their travel lane.

SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 1: Remove Severe Conflicts
ESTIMATED CRASH REDUCTION	6% reduction in all crashes at all severities ¹³
ESTIMATED COST	\$128,000 per 1,000 feet of roadway (both sides)

Image Source: https://safety.fhwa.dot.gov/provencountermeasures/safety_edge.cfm

HIGH VISIBILITY STRIPING AND SIGNING

High visibility striping and signing reflects lights from vehicles back to the driver which increases visibility of lane lines, markers, and signs during dark or inclement weather. Wet-reflective striping is recommended in areas that experience frequent rain.

Image Source: https://highways.dot.gov/safety/other/visibility/nighttime-visibility-general-information

SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 4: Increase Attentiveness and Awareness
ESTIMATED CRASH REDUCTION	Striping – 28% reduction in wet-road crashes at all severities Signs – Varies based on the sign purpose
ESTIMATED COST	Striping – \$4,000 per 1,000 feet of roadway Signs – \$3,000 per sign

¹³ Oregon Department of Transportation. (2023). Oregon crash reduction factor manual. Oregon Department of Transportation. https://www.oregon.gov/odot/Engineering/ARTS/CRF-Manual.pdf

CURVE WARNING SIGNS

Curve warning signs may include advanced warning signs, advisory speed plaques, and chevron and arrow signs posted throughout the curve. Installing the required and recommended chevron signs helps to define the horizontal alignment of the roadway and guide drivers through the curve or turn. A Ball-bank indicator should be used according to the MUTCD to determine the appropriate advisory speed for each curve or turn.

SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 4: Increase Attentiveness and Awareness
ESTIMATED CRASH REDUCTION	16% reduction in all crashes at all severities ¹⁴
ESTIMATED COST	\$8,000 per curve

Image Source: https://highways.dot.gov/safety/rwd/keep-vehicles-road/horizontal-curve/low-cost-treatments-horizontal-curve-safety-2016-4

POST MOUNTED DELINEATORS

Post mounted delineators are retroreflective and effectively reduce nighttime crashes, especially when installed on horizontal curves.

Image Source: https://highways.dot.gov/safety/rwd/keep-vehicles-road/horizontal-curve/low-cost-treatments-horizontal-curve-safety-2016-3

SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 4: Increase Attentiveness and Awareness
ESTIMATED CRASH REDUCTION	30% reduction in nighttime curve crashes at all severities ¹⁴
ESTIMATED COST	\$3,000 per 1,000 feet (both sides)

¹⁴ Oregon Department of Transportation. (2023). Oregon crash reduction factor manual. Oregon Department of Transportation. https://www.oregon.gov/odot/Engineering/ARTS/CRF-Manual.pdf

GUARDRAIL

Guardrails are designed to absorb energy during a crash and deflect vehicles back onto the roadway, minimizing the potential severity of a roadway departure crash.

SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 1: Remove Severe Conflicts
ESTIMATED CRASH REDUCTION	47% reduction in roadway departure crashes at all injury severities ¹⁵
ESTIMATED COST	\$70,000 per 1,000 feet of roadway (one side)

Image Source: https://safety.fhwa.dot.gov/roadway_dept/countermeasures/docs/Road-Terminals_Nov2015Safelogo.pdf

While the above roadway departure countermeasures are considered "operational" in nature to influence safer road use and can be easily incorporated into pavement preservation and maintenance work, the following roadway departure countermeasures — widening paved shoulders and creating clear zones with recoverable roadside slopes — are not. These are considered "modernization" to meet current engineering design standards for providing a safe, multi-modal roadway and are beyond the scope of maintenance/preservation/operations.

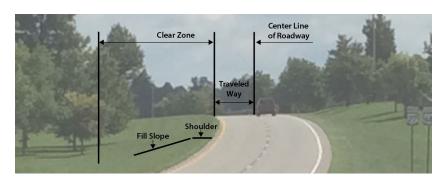
Projects beyond maintenance/preservation/operations require design concept approval by the Board of County Commissioners. The process involves consultations with affected property owners to explore alternatives that avoid, minimize, and/or mitigate negative property impacts. The process includes a public hearing before the Lane County Transportation Advisory Committee prior to the Board's decision.

This is important context, because historically, public outreach in the County has indicated a strong preference for shoulder widening; however, the targeted outreach to affected property owners along the HPN conducted as part of the TSAP process has indicated a stronger preference for operational changes, as well as concerns about the personal property impacts of shoulder widening and roadside changes. As a five-year plan, this TSAP focuses on implementing operational improvements in the near term, while acknowledging the importance of pursuing larger changes over time with additional community engagement.

¹⁵ Oregon Department of Transportation. (2023). Oregon crash reduction factor manual. Oregon Department of Transportation. https://www.oregon.gov/odot/Engineering/ARTS/CRF-Manual.pdf

WIDE PAVED SHOULDERS

Wider shoulders provide drivers with more recovery area to regain control of the vehicle after departing their lane.



SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 1: Remove Severe Conflicts
ESTIMATED CRASH REDUCTION	6-18% reduction in all crashes at all severities (1 to 3 feet of widening) ¹⁶
ESTIMATED COST	\$120,000 per 1,000 feet of roadway (one side, per foot of widening)

Image Source: Sprinkle Consulting, https://highways.dot.gov/media/1237

CLEAR ZONES AND RECOVERABLE ROADSIDE SLOPES

A clear zone is an area beyond the edge of the through-travel lane that is unobstructed and traversable, allowing drivers to come to a stop safely or regain control of a vehicle that has left the roadway. Providing clear zones that are free of fixed objects or obstructions with traversable side slopes can significantly reduce the likelihood of crashes resulting in fatal or serious injury.

SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 1: Remove Severe Conflicts
ESTIMATED CRASH REDUCTION	22% reduction in all crashes at all severities (increasing clear zone from 3-16 feet). Crash Reduction for flattening sideslopes varies ¹⁶
ESTIMATED COST	\$87,000 per 1,000 feet of roadway (both sides)

Image Source: https://kp.uky.edu/knowledge-portal/articles/roadside-safety-knowledge-book-clear-zone-clear-zone-2/

¹⁶ Oregon Department of Transportation. (2023). Oregon crash reduction factor manual. Oregon Department of Transportation. https://www.oregon.gov/odot/Engineering/ARTS/CRF-Manual.pdf

Reducing speeds is one of the most effective ways to prevent roadway departure crashes. Speed feedback signs and transverse speed reduction markings are the most readily available engineering countermeasures for managing speeds. In the rural context, speed management via engineering alone is limited. Law enforcement is a critical component in the effort to change driver behavior and reduce vehicle speeds, which are a leading contributing factor in fatal and serious injury crashes in rural Lane County (see Non-Infrastructure Strategies).

DYNAMIC SPEED FEEDBACK SIGNS

Dynamic speed feedback signs provide real-time information to drivers about their speed and have been shown to lower driver speeds when

paired with enforcement. They may be applied in locations with high frequency of speed-related crashes and/or risky driving behaviors.

Image Source: https://highways.dot.gov/ media/15211

SAFE SYSTEM APPROACH OBJECTIVE	Safer Speeds
ROADWAY DESIGN HIERARCHY	Tier 2: Reduce Vehicle Speeds
ESTIMATED CRASH REDUCTION	10% reduction in all crashes at all severities ¹⁷
ESTIMATED COST	\$10,000 per sign

¹⁷ Oregon Department of Transportation. (2023). Oregon crash reduction factor manual. Oregon Department of Transportation. https://www.oregon.gov/odot/Engineering/ARTS/CRF-Manual.pdf).

TRANSVERSE SPEED REDUCTION MARKINGS

Transverse speed reduction markings are white bars installed perpendicular to the center, edge, or lane lines on roadways in progressively decreased spacing, increasing driver's perception of their speed, causing them to slow down. They may be applied prior to unexpected horizontal curves and intersections to reduce driver speed.

SAFE SYSTEM APPROACH OBJECTIVE	Safer Speeds
ROADWAY DESIGN HIERARCHY	Tier 4: Increase Attentiveness and Awareness
ESTIMATED CRASH REDUCTION	N/A
ESTIMATED COST	\$8,000 per location

Image Source: https://highways.dot.gov/safety/local-rural/speed-management-manual-local-rural-road-owners/3-identifying-countermeasures

PRIORITY COUNTERMEASURES FOR INTERSECTION CRASHES

ENHANCED INTERSECTION WARNING

Improving intersection warnings for unsignalized intersections can be achieved through use of several proven low-cost countermeasures including:

- 1. Doubled-up or oversized advanced intersection warning signs with street name plaques
- Doubled-up or oversized advanced "Stop Ahead" signs
- 3. Doubled-up or oversized "STOP" signs
- 4. Installation of a minimum 6-foot wide raised splitter island on the stop approach (without pavement widening)
- 5. Properly placed stop bar
- 6. Removal of any foliage or parking that limits sight distance
- 7. Double arrow warning sign at stem of T-intersections

SAFE SYSTEM APPROACH OBJECTIVE	Safer Speeds
ROADWAY DESIGN HIERARCHY	Tier 4: Increase Attentiveness and Awareness
ESTIMATED CRASH REDUCTION	20% (1–2 countermeasures), 25% (3–4 countermeasures), 30% (5–7 countermeasures) reduction in all crashes at all severities ¹⁸
ESTIMATED COST	\$5,000-\$30,000 per intersection (2 approaches)

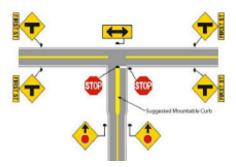
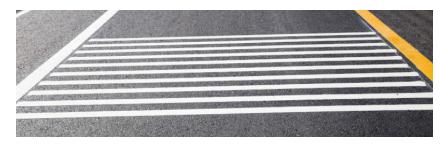


Image Source: https://safety.fhwa.dot. gov/hsip/hrrr/manual/sec43.cfm

¹⁸ Oregon Department of Transportation. (2023). Oregon crash reduction factor manual. Oregon Department of Transportation. https://www.oregon.gov/odot/Engineering/ARTS/CRF-Manual.pdf).

DOUBLE-WIDE STOP BARS, "STOP" OR "STOP AHEAD" PAVEMENT MARKINGS, REFLECTIVE TAPE ON SIGN POSTS

Roadway pavement markings are effective at increasing drivers' alertness to the presence of unsignalized intersections and reducing the potential for conflicts.



SAFE SYSTEM APPROACH OBJECTIVE	Safer Speeds
ROADWAY DESIGN HIERARCHY	Tier 4: Increase Attentiveness and Awareness
ESTIMATED CRASH REDUCTION	31% reduction in all crashes at all severities for "STOP AHEAD" pavement markings ¹⁹
ESTIMATED COST	\$5,000 per location

Image Source: https://www.fhwa.dot.gov/publications/research/safety/08045/index.cfm

TRANSVERSE RUMBLE STRIPS

On stop-controlled approaches when the need to stop may be unexpected (e.g., isolated intersection, upstream vertical or horizontal curves limiting visibility, etc.), rumble strips can be milled across the roadway to provide an audible warning to drivers. Rumble strips are discouraged in residential areas due to the noise impacts on neighboring residents. Consider maintenance needs and agency resources prior to installation.

SAFE SYSTEM APPROACH OBJECTIVE	Safer Speeds
ROADWAY DESIGN HIERARCHY	Tier 4: Increase Attentiveness and Awareness
ESTIMATED CRASH REDUCTION	25% reduction in fatal and serious injury crashes ¹⁹
ESTIMATED COST	\$19,000 per intersection (2 approaches)

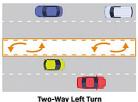
Image Source: https://www.fhwa.dot.gov/publications/research/safety/hsis/12047/index.cfm

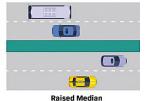
¹⁹ Oregon Department of Transportation. (2023). Oregon crash reduction factor manual. Oregon Department of Transportation. https://www.oregon.gov/odot/Engineering/ARTS/CRF-Manual.pdf

INTERSECTION GEOMETRY AND TRAFFIC CONTROL IMPROVEMENTS

Intersection geometry and traffic control improvements focus on enhancing safety and efficiency by optimizing the design and operation of intersections. This includes measures such as realigning intersection approaches to achieve more perpendicular alignments, improving visibility, and reducing conflict points. Improvements may also involve upgrading traffic control through the implementation of roundabouts, signalization, or other innovative solutions to better separate road

users in space and time. When funding for permanent improvements is unavailable, temporary measures like paint and posts can be utilized to achieve similar safety benefits.


SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 3: Manage Conflicts in Time
ESTIMATED CRASH REDUCTION	Varies
ESTIMATED COST	Varies


Image Source: https://highways.dot.gov/safety/other/older-road-user/handbook-designing-roadways-aging-population/chapter-7-intersections

ACCESS MANAGEMENT

Implementing access management within the functional area of intersections is an effective safety improvement due to the reduction of conflict points in areas where multiple movements converge. This involves strategies such as limiting or consolidating driveways near intersections as well as adding medians, channelization, or turn lanes. By managing access in these critical areas, these measures enhance traffic flow and reduce the likelihood of collisions.

SAFE SYSTEM APPROACH OBJECTIVE	Safer Roads
ROADWAY DESIGN HIERARCHY	Tier 3: Manage Conflicts in Time
ESTIMATED CRASH REDUCTION	Varies
ESTIMATED COST	Varies

Image Source: https://ops.fhwa.dot.gov/access_mgmt/how_is_am_acheived.htm

SYSTEMIC NON-INFRASTRUCTURE STRATEGIES

We cannot "engineer" our way to zero fatalities and serious injuries. This is particularly true when aiming to address risky behaviors like speeding and drug and alcohol use, where engineering interventions are limited. Law enforcement and education are essential to addressing these risks and achieving meaningful change in driver behavior.

Enforcement

Lane County has not had a traffic team for over a decade due to insufficient resources. In addition to inadequate funding, it is challenging to recruit and retain officers. Enforcement of speed limits and driving under the influence of intoxicants (DUII) arrests are more effective in immediate behavior change than longer-term education efforts. That said, deputies utilize opportunities to educate as part of enforcement duties; and, when deemed appropriate, issue warnings instead of citations.

Speeding, drugs, and alcohol are the primary contributing factors in many fatal and serious injury crashes on rural County roads. To reduce these crashes, enforcement resources must be applied. Although the 2025 TSAP will enable Lane County to apply for SS4A implementation funding for infrastructure projects, there is currently no reliable funding source identified for enforcement. Community outreach on traffic safety confirms a public concern about the lack of traffic enforcement. Addressing this resource deficiency is a high priority for the 2025 TSAP.

The actions listed below are very focused, considering the resource deficiencies. Unlike the 2017 TSAP, which included a broader list of actions, such as pursuing more restrictive laws, the TSAP Task Force recognized that none of those actions were fulfilled due to resource constraints and desired the 2025 TSAP to be focused on the actions most critical to saving lives. Most critical is enforcement of existing laws that directly correlate to roadway deaths, which are speeding, drugs, and alcohol.

 Short Term (0-2 years): Continue grant-funded, overtime highvisibility saturation patrols; focus efforts on DUII prevention and speeding on the HPN which are the roads with the greatest risk of fatal and serious injury crashes.

Despite being understaffed, the Sheriff's Office secures grant funding annually to provide traffic enforcement, especially for DUII prevention around holidays. For example, over the 2025 Labor Day weekend, deputies arrested four people for DUII. The grant funding is limited and only covers overtime, which means deputies must volunteer to work overtime shifts.

 Mid Term (3-5 years): Evaluate funding sources and process for automated enforcement on the HPN.

The priority is having enough deputies to enable dedicated traffic enforcement. Given the complexity of the resource constraints, that is a longer-term action. As noted above, the focus of traffic enforcement should be on the HPN of roads with the greatest risk

of fatal and serious injury crashes. Even if a traffic team were in place, they can't be everywhere, all the time, including the HPN which consists of 99.9 miles! While current grant funding for sporadic traffic safety enforcement does help, stable long-term funding and a dedicated traffic safety enforcement program will be essential in order for us to adequately address the problem.

Automated enforcement, specifically speed cameras, are currently allowed by Oregon law in cities only. As such, it is not a tool available to Lane County on rural roads. Enabling legislation is only part of the implementation challenges; the largest being the resources needed to manage a speed camera program.

In addition to equipment and administration costs, a law enforcement officer is required to review the video footage to issue the citations, which is very labor intensive. Further, law enforcement officers may need to appear in court for contested cases. Lane County only has a Circuit Court (no DUII, Justice, or Muni courts) which means all contested cases from the resulting spike in citation volume would substantially strain the already burdened court. Further, Lane County only receives a portion of the ticketing revenue, with the State receiving over half.

This mid-term action seeks to expand the County's understanding of this automated landscape. Several cities have implemented safety camera programs from which the County could learn. The result of this action would be a report on the exploratory process with recommendations for future action.

 Long Term (6+ years): Establish a sustainable funding source for a dedicated traffic team focused on mitigating speed and DUII on HPN. For example, support efforts to modify the use of cannabis tax revenue for community and dispensary education and enforcement activities.

Education

The TSAP Task Force membership includes Public Health staff who specialize in drug prevention, social-norming public messaging, and long-term behavior change. Leveraging that expertise within Lane County is the focus of the education actions recommended in this TSAP. The education actions are focused on DUII prevention because that is the greatest behavior risk contributing to fatal and serious injury crashes in rural Lane County. While the data affirms that the focus of education campaigns must be DUII prevention, there is an ongoing desire for education and awareness on a broad range of safety topics, including distracted driving and seatbelt use. As resources allow, it is recommended that Lane County continue to collaborate with regional safety partners in broader education efforts.

 Short Term (0-2 years): Pair Lane County Public Health Drug/ Alcohol Prevention Program with Sheriff's Office saturation efforts on the HPN.

The Prevention Program has developed and conducted education and media campaigns about social norms related to impaired driving, such as "Rethink the Drink". Expand the visibility of the saturation efforts with Public Heath prevention messaging.

 Mid Term (3-5 years): Identify external education partners in the vicinity of the HPN.

The Rethink the Drink campaign targeted the Eugene area around Autzen stadium and football season. Expand the reach of this campaign by identifying target audiences and trusted social networks in the vicinity of the HPN. The target audience should include establishments that sell alcohol and cannabis.

 Long Term (6+ years): Establish a sustainable funding source for ongoing DUII prevention and other transportation safety education initiatives.

Policies, Standards, and Processes

Commissioners in a public forum twice per year on

crash trends and safety initiatives.

Policies, standards, and processes refer to how Lane County makes decisions and what information guides these decisions. Existing practices and policies have established a foundation that the County can leverage to advance the goal of the TSAP, including those in Lane Code and the Systemic Engineering Implementation Team (SEIT) Implementation Guide. Key strengths and opportunities are listed in the table below. Additional recommendations are provided in the appendix.

TABLE 3. LIST OF CURRENT POLICIES, STANDARDS, AND PROCESSES

EXISTING STRENGTHS	OPPORTUNITY FOR GROWTH	TSAP EMPHASIS AREAS	SAFE SYSTEM APPROACH ELEMENT
SAFETY POLICY COMMITMENT			
Lane County made a policy commitment to work Toward Zero Deaths, with the adoption of the 2017 TSAP.	Achieve zero deaths and serious injuries by 2045.		
The Lane County Transportation System Plan, Policy 1-b states, "Ensure safety is a top priority in making decisions for the Capital Improvement Program and for transportation operations, maintenance, and repair.	Amend the CIP prioritization framework to ensure safety is the top priority in decision making, consistent with this TSP policy.		
SAFETY TASK FORCE			
The Fatal Crash Investigation Team (FCIT) was created in 2017 to align County departments in working TZD. The team includes representatives from Public Heath, Sheriff's Office, County Counsel, and Public Works. The team meets monthly to evaluate recent fatal crashes and discuss potential interventions to prevent future crashes. The team reports to the Board of County	Expand the FCIT role from reviewing fatal crashes to include guiding TSAP implementation.		

SAFETY CORRIDOR PROGRAM

In 2021, Lane County was one of two counties in Oregon to participate in the statewide pilot program to test the application of ODOT's Safety Corridor program on county roads. Lane County designated the first seven miles of London Road as a safety corridor. The test successfully led to enabling legislation that becomes effective January 2026.

Establish criteria and process for designating safety corridors consistent with the new law which enables up to two safety corridors in effect at one time. Prioritize implementation on the HPN.

LANE CODE

Chapter 15 establishes design standards for safety, such as paved shoulders and side slopes; as well as access management standards to reduce the number of access connections and increase the distance between them. Private developments are reviewed for compliance with these standards.

Further refine the classification of Local Roads to create specific access and design standards more relevant to land uses and relative level of development, such as: Residential Rural Local; Commercial Rural Local; Unincorporated Community Local. Specifically consider allowances that support reduced vehicle speeds, such as increasing driveway density by reducing spacing standards, allowing on-street parking, and requiring walking/biking infrastructure that is physically separated or buffered from vehicle traffic (e.g. elevated with curb, setback with side path or buffered with diagonal paint and/or delineators). For Commercial Local, establish standards for wider turning radius and upgrading affected roads to current standards.

Amend access management requirements to install a broader, more comprehensive safety lens when reviewing access connections with clearer regulations to implement safe improvements.

EXISTING STRENGTHS

OPPORTUNITY FOR GROWTH

TSAP EMPHASIS AREAS

SAFE SYSTEM APPROACH ELEMENT

Chapter 15 establishes the Traffic Impact Analysis (TIA) requirements for development. In 2017, the requirement was expanded to apply to access connections that do not meet code standards to enable a review of safety.

Amend TIA standards to require a closer examination of crash history and more stringent safety mitigations.

As noted above, amend access management standards to address safety issues as a first layer prior to considering TIA triggers.

SYSTEMIC ENGINEERING IMPLEMENTATION TEAM (SEIT) GUIDE

To support implementation of the 2017 TSAP, a Public Works team, known as the Systemic Engineering Implementation Team (SEIT) was formed. The team included representatives from design engineering, construction services, road maintenance, traffic operations, and transportation planning. Guest speakers from other agencies provided guidance on specific countermeasures. The team met for over three years and produced an implementation guide for all of the engineering actions recommended in the TSAP.

Reinstate the SEIT to support implementation of the 2025 TSAP. Things for the team to explore include: establishing a sinusoidal stripe first policy with associated design standards; revised rumble strip requirements from 4-foot shoulder to 1-foot shoulder width; establish optical speed bars as a standard practice and prepare associated design details; enable broader use of post mounted delineators, especially along curves.

Traffic Operations responds to community concerns of speeding, collects speed data, deploys temporary speed feedback signs, and requests speed studies from ODOT. A traffic calming program is currently in the pilot phase.

Establish a process for regularly monitoring roadway speeds; for example, driveway density and developments change over time which may warrant lower speed limits. Prioritize implementation of the traffic calming program on rural roads adjacent to schools.

EXISTING STRENGTHS	OPPORTUNITY FOR GROWTH	TSAP EMPHASIS AREAS	SAFE SYSTEM APPROACH ELEMENT
SAFE ROUTES TO SCHOOL			
Lane County pursues ODOT Safe Routes to School (SRTS) funding on a regular basis and has secured infrastructure grants for sidewalks in the City of Lowell and unincorporated community of Marcola.	To support continued pursuit of funding, develop design concepts for SRTS infrastructure for all rural schools.		

IMPLEMENTATION GUIDE

Creating an actionable plan that transforms ideas into tangible results is the only way to achieve our goal of eliminating fatal and serious injuries on Lane County roadways. The systemic strategies described previously will be embedded into everyday efforts, programmed capital projects, and maintenance activities as they occur. Implementing larger infrastructure projects, however, will require partnerships and the pursuit of competitive grants to fund most of the high priority projects described at the end of this chapter.

Safety Funding Programs

Wherever possible, Lane County will incorporate systemic safety strategies into all programmed capital projects and maintenance activities as they occur. For larger projects that require external funding, the table on the following page summarizes main federal and state safety funding programs available to local agencies in Oregon.

TABLE 4. LIST OF FEDERAL AND STATE SAFETY FUNDING PROGRAMS FOR LOCAL AGENCIES

PROGRAMS	ADMINISTERED BY	FUNDING SOURCE	TYPICAL ELIGIBLE APPLICANTS	CONSIDERATIONS FOR LANE COUNTY	TYPICAL AWARD AMOUNT	APPLICATION CYCLE
SAFE STREETS AND ROADS FOR ALL (SS4A)	USDOT	Federal	Cities, counties, MPOs, tribal governments	Final cycle in 2026 will be very competitive; can apply for both demonstration activities and infrastructure projects	\$200K - \$25M	Annual through 2026
TRANSPORTATION GROWTH MANAGEMENT (TGM)	ODOT + DLCD	State + Federal	Local governments	Does not fund construction, but well suited for corridor safety studies	\$75K - \$250K	Annual
ALL ROADS TRANSPORTATION SAFETY (ARTS)	ODOT	Federal HSIP	Cities counties, ODOT regions	Funding available for construction of systemic and hotspot safety projects	\$100K - \$1M+	Every 3 years
BEHAVIORAL SAFETY GRANTS	ODOT Traffic Safety Office	State + Federal (NHTSA)	State/local agencies, nonprofits	Grants available for education/ outreach, EMS/traffic records, safety planning	\$5K - \$500K	Annual
COMMUNITY PATHS	ODOT	State + Federal	Local governments, tribes, nonprofits	Focused on bike/ped connectivity, such as paths, separated bike/ped routes, related planning studies	\$50K - \$4M	Annual
SAFE ROUTES TO SCHOOL	ODOT	State + Federal	School districts, local governments	Can fund bike/ped facilities connecting to schools and education/outreach	\$50K - \$2M	Annual
BETTER UTILIZING INVESTMENTS TO LEVERAGE DEVELOPMENT (BUILD)	USDOT	Federal	States, local/tribal governments, transit agencies	Safety is not the primary criteria; Rural projects are eligible for 0% local match	\$1M - \$25M+	Annual

Tracking Performance

As strategies and projects are implemented, it is important to regularly monitor countywide safety performance to determine the effectiveness of those efforts, and make adjustments to future investments and priorities, as needed. Moving forward, Lane County will use the following performance measures to track the successful implementation of this TSAP.

- Number of fatal and serious injury (FSI) crashes on County roadways
- Number of FSI crashes on the HPN
- Number of FSI crashes by emphasis area (lane departure, impaired driving, intersections, speed, vulnerable road users)

In addition to tracking safety performance at a high level, it is recommended that the County study the performance of individual treatments, like speed feedback signs, to confirm their effectiveness.

HIGH PRIORITY PROJECTS

Over 145 improvements were identified to improve safety along the HPN, as described on the HPN Summary Sheets for each corridor starting on Page 53. Recognizing the reality of the County's limited resources and inability to complete all recommended projects, the full list was prioritized based on crash risk, cost effectiveness, community support, and alignment with available grant programs. The following table reflects the County's Top 10 projects for pursuing grant funding within the five-year TSAP planning period. Projects not listed below will be evaluated and re-prioritized during the next TSAP update. Operations and maintenance activities listed on the HPN Summary Sheets are not included in the table below but will be implemented as resources allow.

TABLE 5. HIGH PRIORITY PROJECTS FOR PURSUING GRANTS

HIGH PRIORITY NETWORK ROADWAY	SEGMENT	PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE
TERRITORIAL HIGHWAY - NORTH	Veneta - Elmira	20.3	Veneta - Elmira Multi-Use Path	Construct Phase 2 of the path between the trailhead parking lot and Veneta (Phase 1 from Elmira to trailhead has been funded by Oregon Community Paths.)	\$\$\$\$
TERRITORIAL HIGHWAY - NORTH	Fir Grove - Clear Lake Road	20.8	Segment and Intersection Safety Improvements	Install 6' shoulders with rumble strips and recessed pavement markers; flatten vertical curve and replace Inman Branch culvert; install center turn lane pocket at Demming Road intersection; reconfigure and install Through Route Activated Warning System (TRAWS) at Clear Lake Road intersection	\$\$\$\$
FRANKLIN BOULEVARD EAST AND 30 TH AVENUE/I-5 INTERCHANGE	I-5 to Twin Buttes Road	8.4	Design Concept Project / Interchange Area Management Plan	Study to evaluate design alternatives and developed preferred design for multi-modal safety. This may require an IAMP with ODOT for the I-5 interchange	\$\$
GREEN HILL ROAD	Full Length	9.2	Corridor Study / Design Concept	Study the preferred design solution for entire length of Green Hill Road	\$
WARTHEN ROAD	Falcon Road to Territorial Highway	22.2	Safe Routes to School Improvements	Develop preferred design for Fern Ridge Safe Routes to School project.	\$\$
BAILEY HILL ROAD	Twin Oaks Elementary School	3.2	School Zone Improvements	Remove passing zone within school zone limits; Install speed feedback signs; Partner with the school district to improve the no-parking area in front of the school (near term) and develop an alternative site circulation plan for vehicles and buses that could include relocating parking areas (long term).	\$
CAMP CREEK ROAD, COBURG ROAD, HECETA BEACH ROAD, LORANE HIGHWAY, PENGRA ROAD, ROW RIVER ROAD, LONDON ROAD, AND TERRITORIAL HIGHWAY	Various horizontal curves including (but not limited to) Camp Creek Road near MP 0.6 ("Deadman's Curve") and Coburg Road near MP 10.0	-	Systemic Curve Warning Upgrades	Advanced warning signs, chevrons, post- mounted or guardrail-mounted delineators, speed feedback signs, advisory speed feedback signs, raised pavement markers.	\$

HIGH PRIORITY NETWORK ROADWAY	SEGMENT	PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE
GREEN HILL ROAD, APPLEGATE TRAIL, PRAIRIE ROAD, COBURG ROAD, HECETA BEACH ROAD, JASPER-LOWELL ROAD, MARCOLA ROAD, PENGRA ROAD, RIVER ROAD, ROW RIVER ROAD, LONDON ROAD, AND TERRITORIAL HIGHWAY	Various stop-controlled intersections	-	Systemic Stop Controlled Intersection Upgrades	Install stop-controlled intersection visibility upgrades (double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, reflective tape on sign posts) at all intersections. Install Through Route Activated Warning System (TRAWS) at Heceta Beach Rd/4th Street; Marcola Road/Hill Road/Sunderman Road; Prairie Road/Beacon Drive; Prairie Road/Sovern Road; Evaluate all-way stop or signal at Jasper-Lowell/Parkway Road. Install overhead flashing beacon at Row River Road/Sears Road.	\$\$
30TH AVENUE	Spring Boulevard to OR 225	1.1	Safety Improvements	Construct safety improvements to include protected shoulder, center turn lanes, and a roundabout at Eldon Schafer Drive.	\$\$\$\$
MARCOLA ROAD	Near Elk Herd/ McKenzie River Trust Conservation Land	14.4	Wildlife Crossing Detection Demonstration/Pilot project	Install wildlife detection system and monitor results to expand to other locations in the future. See HPN Summaries for additional locations along Camp Creek Road, Clear Lake Road, Jasper-Lowell Road, London Road, Road and Pengra Road.	\$\$
APPLEGATE TRAIL, CAMP CREEK ROAD, COBURG ROAD, FRANKLIN BOULEVARD EAST, HECETA BEACH ROAD, LONDON ROAD, LORANE HIGHWAY, PENGRA ROAD, PRAIRIE ROAD, ROW RIVER ROAD AND TERRITORIAL HIGHWAY	Various urban-rural transitions and school zones along HPN roads.	-	Traffic Calming and Speed Management Demonstration/Pilot Project	Install traffic calming treatments such as speed feedback signs, speed cushions, and optical speed bars. See HPN Summaries for specific locations along Applegate Trail, Camp Creek Road, Coburg Road, Franklin Boulevard East, Heceta Beach Road, London Road, Lorane Highway, Pengra Road, Prairie Road, Row River Road and Territorial Highway	\$

High Priority Network Summaries

The following pages provide additional detail about each of the 22 High Priority Network roadways, including roadway characteristics, high-level crash patterns, recent or planned projects, and the full list of engineering recommendations for each corridor.

30TH AVENUE

SPRING BOULEVARD TO OR 225

ROAD CHARACTERISTICS

SEGMENT LENGTH: 2 MILES

ADT: 11,700 # OF LANES: 4

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: 6'-7', PAVED

POSTED SPEED: 55 MPH

CRASH TRENDS

TOP CRASH TYPES:

26%

REAR-END

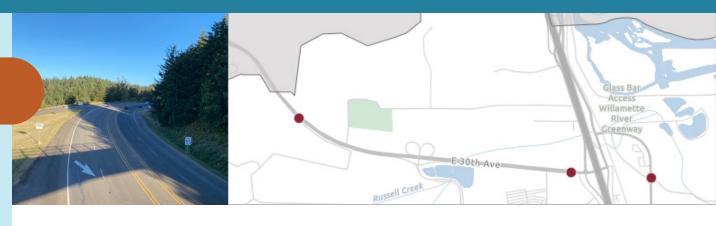
21%

SIDESWIPE OVERTAKING

16% FIXED OBJECT

TOP CONTRIBUTING FACTORS:

16% TOO FAST


16% **FAILURE TO**

AVOID

11% CARELESS

11% IMPROPER PARKING

11% NO YIELD

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
1.1	Safety Improvements	Construct the design concept approved by the Board for safety improvements to include protected bike/ped path, center turn lanes, and a roundabout at Eldon Schafer Drive.	\$\$\$\$	Long-term
1.2	Bridge Widening	Widen 30th Avenue structure over I-5 for bike lanes and sidewalks, integrating the McVay Highway and Franklin Boulevard ramp terminals to improve safety for all modes. This will require coordination with the Oregon Department of Transportation (ODOT) which has jurisdiction of the interchange; this will likely require an Interchange Area Management Plan (IAMP).	\$\$\$\$	Long-term

APPLEGATE TRAIL

OR 36 TO TERRITORIAL HIGHWAY

ROAD CHARACTERISTICS

SEGMENT LENGTH: 2.6 MILES

ADT: 1,000-2,500 **# OF LANES:** 2

LANE WIDTH: <10.5′

SHOULDER WIDTH: 0'-2', PAVED

POSTED SPEED: 40 MPH

CRASH TRENDS

12 CRASHES 0 FATAL 3 SERIOUS

TOP CRASH TYPES:

33%

FIXED OBJECT

33%
TURNING

TOP CONTRIBUTING FACTORS:

25%

NO YIELD

17%

OTHER IMPROPER DRIVING

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
2.1	Applegate Trail/ Territorial Hwy Intersection Realingment	Install stop-controlled intersection visibility upgrades (double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, reflective tape on sign posts); Install "Yield" sign and pavement markings for the left-turn movement onto Applegate Trail; Install optical speed bars on southbound Applegate Trail approach.	\$\$	Short-term
2.2	Speed Study: Applegate Trail	Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed. (Southbound Applegate Trail has a statutory speed limit of 55 mph on entering Franklin, while Territorial Highway has a reduced speed of 50 mph through Franklin.)	\$	Short-term
2.3	Speed Feedback Signs	Install feedback signs on north and south ends of Applegate Trail.	\$	Mid-term
2.4	RPM Installation	Install Raised Pavement Markers (RPMs) through the curve near MP 1.1 to mitigate the multiple crossover crashes.	\$	Mid-term
2.5	Pavement Preservation: Applegate Trail	Pavement preservation project – Include wider 6" edge lines, Safety Edges, and centerline sinusoidal/mumble strips, and modified passing zones (where needed).	\$\$\$	Long-term
2.6	Upgrade to Minor Collector Cross-section	TSP project – Construct to minor collector standards with two 11' travel lanes and 4' shoulders on both sides.	\$\$\$\$	Long-term

BAILEY HILL ROAD

LORANE HIGHWAY TO EUGENE UGB

ROAD CHARACTERISTICS

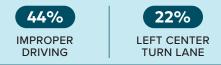
SEGMENT LENGTH: 2 MILES

ADT: 2,500-5,000 **# OF LANES:** 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: 2'-5', PAVED

POSTED SPEED: 45 MPH


CRASH TRENDS

TOP CRASH TYPES:



TOP CONTRIBUTING FACTORS:

RECENT/PLANNED PROJECTS

Bailey Hill Road/Lorane Highway intersection visibility upgrades as part of the Lorane Highway Pavement Preservation Project in 2027.

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
3.1	Speed Study: Bailey Hill Road	Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed.	\$	Short-term
3.2	Near Twin Oaks Elementary School	Remove passing zone within school zone limits; Install speed feedback signs; Partner with the school district to improve the no-parking area in front of the school with additional "No Parking" signs and pavement markings and vertical delineators; Partner with the school district to develop an alternative site circulation plan for vehicles and buses that could include relocating parking areas.	\$	Mid-term
3.3	Bailey Hill Road/ Lorane Highway Intersection: Mid-term	Evaluate effectiveness of short-term treatments; if crash patterns persist, pursue Through Route Activated Warning System (TRAWS)	\$\$	Mid-term
3.4	Pavement Preservation: Bailey Hill Road	Include wider 6" edge lines, Safety Edge, centerline sinusoidal/mumble strips, and modified passing zones (where needed). Also install systemic stop-controlled intersection visibility upgrades.	\$\$	Mid-term
3.5	Bailey Hill Road/ Lorane Highway Intersection: Long-term	Measure the effectiveness of the mid-term solution, above. If severe crashes persist, consider a single-lane roundabout.	\$\$\$\$	Long-term

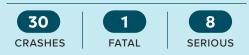
CAMP CREEK ROAD

MARCOLA ROAD TO KICKBUSH LANE

ROAD CHARACTERISTICS

SEGMENT LENGTH: 7 MILES

ADT: 2,000-3,000

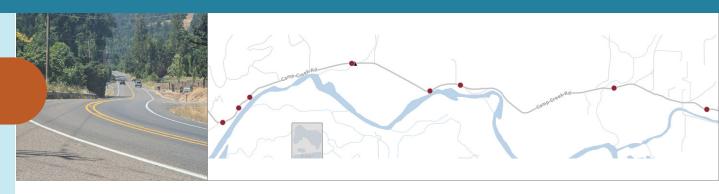

OF LANES: 2

LANE WIDTH: 10.5′-12.5′

SHOULDER WIDTH: 0'-2', PAVED

POSTED SPEED: 45 MPH

CRASH TRENDS



TOP CRASH TYPES:

TOP CONTRIBUTING FACTORS:

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
4.1	Enhanced Curve Warning	Install advisory speed feedback signs, post mounted delineators, and raised pavement markers near MP 0.6 on Camp Creek Road ("Deadman's Curve").	\$	Short- term
4.2	Systemic Curve Warning Upgrades	Install systemic curve warning upgrades including advanced warning signs, chevrons, post-mounted or guardrail-mounted delineators, speed feedback signs.	\$	Mid-term
4.3	Bridge Visibility/ Warning Upgrades	Install curve warning signs, high visibility striping, mounted delineators on bridge wall, and raised pavement makers on centerline and edgeline on bridges/culverts near MP 4.5 and 7.0.	\$	Mid-term
4.4	Pavement Preservation: Camp Creek Road	Include wider 6" edge lines, Safety Edges, and centerline sinusoidal/mumble strips, and modified passing zones (where needed); Install High Friction Surface Treatment on "Deadman's Curve" near MP 0.6.	\$\$	Long-term
4.5	Camp Creek Road/ Marcola Road Intersection	Consider a single-lane roundabout.	\$\$\$\$	Long-term

CLEAR LAKE ROAD

TERRITORIAL HIGHWAY TO GREEN HILL ROAD

ROAD CHARACTERISTICS

SEGMENT LENGTH: 7 MILES

ADT: 5,000-7,000 **# OF LANES:** 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: OVER 5', PAVED **POSTED SPEED:** 55 MPH POSTED, 50 MPH NEAR ORCHARD POINT PARK

CRASH TRENDS

76	0	15
CRASHES	FATAL	SERIOUS

TOP CRASH TYPES:

TOP CONTRIBUTING FACTORS:

RECENT/PLANNED PROJECTS

Curve warning upgrades and improved signing and striping as part of ARTS and Pavement Preservation Projects in 2027.

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
5.1	Clear Lake Road/Territorial Highway Intersection: Phase 1	Install stop-controlled intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, reflective tape on sign posts; Install optical speed bars or transverse rumble strips on stop-controlled approaches.	\$	Short-term
5.2	Clear Lake Road/Territorial Highway Intersection: Phase 2	Construct right-turn lanes and install Through Route Activated Warning System (TRAWS).	\$\$\$	Mid-term
5.3	Install Wildlife Detection System	Install wildlife detection system between MP 5.5 and MP 8.0.	\$\$	Long-term
5.4	Clear Lake Road/Territorial Highway Intersection: Phase 3	Measure the effectiveness of the short-term and mid-term solutions, above. If severe crashes persist, consider a single-lane roundabout.	\$\$\$\$	Long-term
5.5	TSP Project	Install buffered bicycle lanes.	\$\$\$\$	Long-term

COBURG ROAD - NORTH

NORTHERN COUNTY LINE TO GREEN ISLAND ROAD

ROAD CHARACTERISTICS

SEGMENT LENGTH: 3.4 MILES

ADT: 1,700-3,200 **# OF LANES:** 2

LANE WIDTH: 10.5′-12.5′

SHOULDER WIDTH: 0'-2', PAVED

POSTED SPEED: 45 MPH

CRASH TRENDS

CRASHES

3 FATAL 3 SERIOUS

TOP CRASH TYPES:

68%
FIXED
OBJECT

23% TURNING

9% ANGLE

TOP CONTRIBUTING FACTORS:

41%

IMPROPER DRIVING

14%

FAILURE TO YIELD

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
6.1	Speed Study: Coburg Road – North	Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed.	\$	Short-term
6.2	Intersection Improvements: Phase 1	At the Coburg Road/Powerline Road and Coburg Road/Green Island Road intersections, install stop-controlled intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, reflective tape on sign posts.	\$	Short-term
6.3	Systemic Curve Warning Upgrades	Install systemic curve warning upgrades including advanced warning signs, chevrons, post-mounted or guardrail-mounted delineators, speed feedback signs.	\$	Mid-term
6.4	Speed Management Strategies	Install speed management strategies in urban-rural transition zones including speed feedback signs, optical speed bars, gateway sign treatments, step-down speed limits.	\$	Mid-term
6.5	Intersection Improvements: Phase 2	At the Coburg Road/Powerline Road and Coburg Road/ Green Island Road intersections, realign intersections and horizontal curves to flatten curves, maximize sight distance, minimize skew.	\$\$\$\$	Long-term
6.6	Pavement Preservation: Coburg Road – North	Include wider 6" edge lines, Safety Edges, and centerline sinusoidal/mumble strips, and modified passing zones (where needed).	\$\$	Long-term
6.7	Upgrade to Major Collector Cross- section	Construct to major collector standards with two 11' travel lanes and 6' wide shoulders on both sides.	\$\$\$\$	Long-term

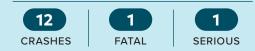
COBURG ROAD - SOUTH

500' SOUTH OF COBURG UGB TO MCKENZIE RIVER BRIDGE

ROAD CHARACTERISTICS

SEGMENT LENGTH: 1.7 MILES

ADT: 8,400 **# OF LANES:** 2


" O. IANIES. 2

LANE WIDTH: 10.5′-12.5′

SHOULDER WIDTH: 0'-2', PAVED

POSTED SPEED: 45 MPH

CRASH TRENDS

TOP CRASH TYPES:

TOP CONTRIBUTING FACTORS:

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
7.1	Speed Study: Coburg Road – South	Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed.	\$	Short-term
7.2	Speed Management Strategies	Install speed management strategies in urban-rural transition zones including speed feedback signs, optical speed bars, gateway sign treatments, step-down speed limits; Install optical speed bars on approaches to McKenzie View Drive.	\$	Mid-term
7.3	TSP Project	Install buffered or protected bike lanes from N Coburg Road to North Game Farm Road.	\$\$\$	Long-term
7.4	Pavement Preservation: Coburg Road — Sotuh	Include wider 6" edge lines, Safety Edges, and centerline sinusoidal/mumble strips, and modified passing zones (where needed).	\$\$	Long-term

FRANKLIN BOULEVARD EAST

FROM FRANKLIN DRIVE TO TWIN BUTTES ROAD

ROAD CHARACTERISTICS

SEGMENT LENGTH: 1 MILE

ADT: 5,000-6,000

OF LANES: 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: 2'-5', PAVED

POSTED SPEED: 45 MPH

CRASH TRENDS

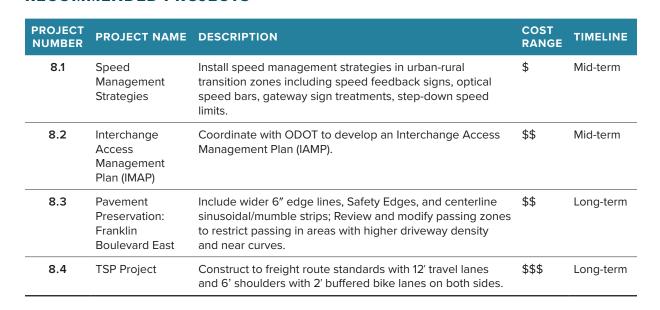
SERIOUS

TOP CRASH TYPES:

27% **HEAD-ON**

27% **TURNING** 27% ANGLE

TOP CONTRIBUTING FACTORS:


36%

FAILURE TO YIELD

18%

DROVE LEFT OF CENTER

18% PASS STOP SIGN

GREEN HILL ROAD

AIRPORT ROAD TO BARGER DRIVE

ROAD CHARACTERISTICS

SEGMENT LENGTH: 1.8 MILES

ADT: 2,500-5,000 **# OF LANES:** 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: ~0', GRAVEL

POSTED SPEED: NONE

CRASH TRENDS

CRASHES FATAL SERIOUS


TOP CRASH TYPES:

TURNING ANGLE REAR-END

TOP CONTRIBUTING FACTORS:

28% 19% 16%

FAILURE TO YIELD TRAFFIC SIGNAL FAILURE TO AVOID

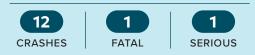
PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
9.1	Green Hill Road/ Bodenhamer Road	Install stop-controlled intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, postmounted delineators, reflective tape on sign posts.	\$	Short-term
9.2	Corridor Design Study	Partner with City of Eugene to study the preferred design solution for entire length of Green Hill Road.	\$	Mid-term
9.3	Speed Sutdy: Green Hill Road	Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed.	\$	Short-term
9.4	Speed Management Strategies	Install speed management strategies in urban-rural transition zones including speed feedback signs, optical speed bars, gateway sign treatments, step-down speed limits.	\$\$	Mid-term
9.5	TSP Project	Construct to major collector standards with two 11' travel lanes and 6' shoulders on both sides; Integrate systemic safety treatments.	\$\$\$\$	Long-term
9.6	Pavement Preservation: Green Hill Road	Include wider 6" edge lines, Safety Edges, and centerline sinusoidal/mumble strips, and modified passing zones (where needed).	\$\$\$	Long-term

HECETA BEACH ROAD

4TH AVENUE TO US 101

ROAD CHARACTERISTICS

SEGMENT LENGTH: 1.9 MILES


ADT: 2,500-5,000 **# OF LANES:** 2

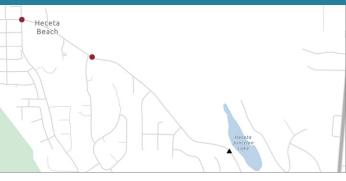
LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: ~0', PAVED

POSTED SPEED: 40 MPH

CRASH TRENDS

TOP CRASH TYPES:


TOP CONTRIBUTING FACTORS:

RECENT/PLANNED PROJECTS

Wider edge lines and continuous no passing center striping recently completed as part of the Pavement Preservation Project in 2025.

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
10.1	Heceta Beach Road/4th Street: Phase 1	Relocate Stop sign on northbound approach; Install stop- controlled intersection visibility upgrades including double- wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, reflective tape on sign posts; Improve intersection sight distance by relocating signs and maintaining vegetation.	\$	Short-term
10.2	Speed Study: Heceta Beach Road	Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed.	\$	Short-term
10.3	Heceta Beach Road/4th Street: Phase 2	Install Through Route Activated Warning System (TRAWS) and install optical speed bars for westbound traffic, east of horizontal/vertical curve.	\$\$	Mid-term
10.4	Systemic Curve Warning Upgrades	Install systemic curve warning upgrades incuding advanced warning signs, chevrons, post-mounted or guardrail-mounted delineators, speed feedback signs.	\$\$	Mid-term
10.5	Systemic Stop- Controlled Intersection Upgrades	At all stop-controlled intersection, install intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, raised pavement markers, reflective tape on sign posts.	\$\$	Mid-term
10.6	Speed Management Strategies	Install speed feedback signs on both ends of the corridor, near Leeward Drive and Woodlake Way.	\$	Mid-term
10.7	TSP Project	Continue to install 4' shoulders on both sides and a separated multi-use path.	\$\$\$	Long-term

JASPER-LOWELL ROAD

PARKWAY ROAD TO PENGRA ROAD

ROAD CHARACTERISTICS

SEGMENT LENGTH: 4 MILES

ADT: 2,000-6,000 **# OF LANES:** 2

LANE WIDTH: 10.5′–12.5′

SHOULDER WIDTH: 2'-5', GRAVEL

POSTED SPEED: 35 MPH

CRASH TRENDS

41 CRASHES 2 FATAL 3 SERIOUS

TOP CRASH TYPES:

41%

FIXED OBJECT

22%
TURNING

TOP CONTRIBUTING FACTORS:

15%

12%

DROVE LEFT OF CENTER

12% TOO FAST

RECENT/PLANNED PROJECTS

Curve warning upgrades and improved signing and striping as part of ARTS and Pavement Preservation Projects in 2027.

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
11.1	Jasper-Lowell Road/Parkway Road Intersection: Phase 1	Conduct intersection traffic control investigation to determine feasibility of traffic control change (signal or all-way stop) and appropriate lane configuration; Review sign placements to reduce sign clutter; Maintain vegetation to improve sight distance.	\$	Short-term
11.2	Targeted Curve Warning Upgrade	At the horizontal curve near Jasper-Lowell Road/ Jasper Mountain Center Driveway install curve advisory speed feedback signs, high friction surface treatment, optical speed bars, post mounted delineators along curve; Coordinate with property owner to mitigate stormwater runoff.	\$\$	Short-term
11.3	Pavement Preservation: Jasper-Lowell Road	Include wider 6" edge lines, Safety Edges, and centerline sinusoidal/mumble strips, and modified passing zones (where needed).	\$\$	Mid-term
11.4	Jasper-Lowell Road/Parkway Road Intersection: Phase 2	Implement traffic control and/or lane configuration change along with advanced signing and high visibility striping.*	\$\$\$	Mid-term
11.5	Jasper-Lowell Road/Pengra Road Intersection	Install stop-controlled intersection visibility upgrades (double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, postmounted delineators, reflective tape on sign posts).*	\$	Mid-term
11.6	Install Wildlife Detection System	Install wildlife detection system from MP 0 to MP 3.3, MP 5 to MP 6, and MP 6.7 to MP 8.8.	\$\$	Long-term
11.7	TSP Project	Construct to major collector standards with two 11' travel lanes and 6' shoulders on both sides; Integrate systemic safety treatments.	\$\$\$\$	Long-term

^{*} Project should be implemented during planned Pavement Preservation Project where feasible.

LONDON ROAD

LATHAM ROAD TO COTTAGE GROVE RESERVOIR ROAD

ROAD CHARACTERISTICS

SEGMENT LENGTH: 6.7 MILES

ADT: 1,000-4,000 **# OF LANES:** 2

LANE WIDTH: 10.5′-12.5′

SHOULDER WIDTH: 0'-2', PAVED

POSTED SPEED: NONE

CRASH TRENDS

20	0	3
CRASHES	FATAL	SERIOUS

TOP CRASH TYPES:

40% 25% 10%
FIXED TURNING SIDESWIPE MEETING

TOP CONTRIBUTING FACTORS:

25% 20% IMPROPER DRIVING

RECENT/PLANNED PROJECTS

Designated Safety Corridor

Pavement preservation work within next five years to include safety improvements, such as wider edge lines and modified passing zones.

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
12.1	Speed Management Strategies	Install speed feedback signs on both ends of the corridor.	\$	Short- term
12.2	Systemic Curve Warning Upgrades	Install systemic curve warning upgrades including advanced warning signs, chevrons, post-mounted or guardrail-mounted delineators, speed feedback signs.	\$	Mid-term
12.3	Systemic Stop- Controlled Intersection Upgrades	At all stop-controlled intersections, install intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, raised pavement markers, reflective tape on sign posts.	\$\$	Mid-term
12.4	Install Wildlife Detection System	Install wildlife detection system between MP 3.4 and Grove Reservoir Road.	\$\$	Long-term
12.5	Systemic Shoulder Widening	Install wider shoulders at spot locations (i.e. for enforcement pads).	\$\$	Long-term
12.6	Roadway Reconstruction	Reconstruct (flatten) vertical curves near Latham Road and Shortridge Hill Road.	\$\$\$\$	Long-term
12.7	TSP Project	Install 4' shoulders.	\$\$\$\$	Long-term

LORANE HIGHWAY

FOX HOLLOW ROAD TO CHAMBERS STREET/EUGENE UGB

ROAD CHARACTERISTICS

SEGMENT LENGTH: 11 MILES

ADT: 2,000

OF LANES: 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: 0'-2', PAVED

POSTED SPEED: NONE

CRASH TRENDS

36 **CRASHES** **FATAL**

TOP CRASH TYPES:

53%

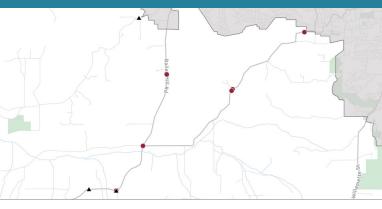
FIXED OBJECT

TOP CONTRIBUTING FACTORS:

36% **IMPROPER**

DRIVING

19%


TOO FAST

11% FAILURE TO YIELD

RECENT/PLANNED PROJECTS

Pavement Preservation Project to upgrade striping, turn lanes, signing and other safety upgrades including signage and pavement marking improvements at Lorane Highway/ Bailey Hill Road Intersection.

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
13.1	Speed Study: Lorane Highway	Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed.	\$	Mid-term
13.2	Speed Management Strategies	Install speed management strategies in urban-rural transition zones including speed feedback signs, optical speed bars, gateway sign treatments, stepdown speed limits. Install speed feedback signs along corridor.	\$\$	Mid-term
13.3	Systemic Curve Warning Upgrades	Install systemic curve warning upgrades incuding advanced warning signs, chevrons, post-mounted or guardrail-mounted delineators, speed feedback signs.	\$\$	Mid-term
13.4	Lorane Highway/ Bailey Hill Road Intersection: Phase 1	Evaluate effectiveness of short-term treatments included in Pavement Preservation project. If severe crashes persist, install Through Route Activated Warning System (TRAWS).	\$\$	Mid-term
13.5	Lorane Highway/ Bailey Hill Road Intersection: Phase 2	Measure the effectiveness of the solutions, above. If severe crashes persist, consider a single-lane roundabout.	\$\$\$\$	Long-term
13.6	TSP Project	Construct to major collector standards with two 11' travel lanes and 6' wide shoulders on both sides. Incorporates systemic safety improvements. Evaluate alternative alignments to reduce right-of-way impacts of shoulder widening.	\$\$\$\$	Long-term

MARCOLA ROAD

SPRINGFIELD UGB TO PARSONS CREEK ROAD

ROAD CHARACTERISTICS

SEGMENT LENGTH: 9 MILES

ADT: 4,000-6,000 **# OF LANES:** 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: 2'-5', PAVED

POSTED SPEED: 35 MPH

CRASH TRENDS

55 2 7
CRASHES FATAL SERIOUS

TOP CRASH TYPES:

27% 24% 18% TURNING FIXED OBJECT REAR-END

TOP CONTRIBUTING FACTORS:

16% 11% 9% FAILURE TO AVOID

RECENT/PLANNED PROJECTS

Wider edge lines, updates to existing rumble strips, ADA ramps at the intersection with Camp Creek Road, and other updated signing as part of the 2026 Pavement Preservation Project and 2027 ARTS project.

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
14.4	Systemic Stop- Controlled Intersection Upgrades	At all stop-controlled intersections, install intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, raised pavement markers, reflective tape on sign posts.	\$\$	Mid-term
14.2	Speed Management Strategies	Install speed management strategies in urban-rural transition zones including speed feedback signs, optical speed bars, gateway sign treatments, step-down speed limits.	\$	Mid-term
14.3	Marcola Road/ Hill Road/ Sunderman Road Intersection: Phase 2	Evaluate effectiveness of mid-term treatments (systemic stop-controlled visibility upgrades). If crash patterns persist, pursue Through Route Activated Warning System (TRAWS).	\$\$	Long-term
14.4	Install Wildlife Detection System	Install wildlife detection system between MP 2.2 and MP 4.8.	\$\$	Long-term
14.5	Marcola Road/Camp Creek Road Intersection	Consider a single-lane roundabout.	\$\$\$\$	Long-term
14.6	TSP Project	Install buffered bike lanes.	\$\$\$\$	Long-term

PENGRA ROAD

JASPER-LOWELL ROAD TO MARINA VISTA DRIVE

ROAD CHARACTERISTICS

SEGMENT LENGTH: 5 MILES

ADT: 2,500-5,000

OF LANES: 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: 0'-4', PAVED

POSTED SPEED: NONE

CRASH TRENDS

21 4 CRASHES FATAL

TOP CRASH TYPES:

67%
FIXED
OBJECT

14%
REAR-END

5% TURNING

TOP CONTRIBUTING FACTORS:

24% TOO FAST

IMPROPER DRIVING

19%

14%

FAILURE TO AVOID

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
15.1	Pavement Preservation: Pengra Road	Include wider 6" edge lines, Safety Edges, and centerline sinusoidal/mumble strips; Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed.	\$\$\$	Mid-term
15.2	Pengra Road/Place Road Intersection	Install stop-controlled intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, reflective tape on sign posts; Install transverse rumble strips on westbound Place Road in advance of Old Pengra Road intersection.*	\$\$	Mid-term
15.3	Pengra Road/ Jasper-Lowell Road Intersection	Install stop-controlled intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, reflective tape on sign posts. On Jasper-Lowell Road, remove "End 45 MPH speed zone" sign just east of intersection.*	\$\$	Mid-term
15.4	Speed Management Strategies	Install speed management strategies in urban-rural transition zones including speed feedback signs, optical speed bars, gateway sign treatments, step-down speed limits.*	\$\$	Mid-term
15.5	Systemic Curve Warning Upgrades	Install systemic curve warning upgrades incuding advanced warning signs, chevrons, post-mounted or guardrail-mounted delineators, speed feedback signs.*	\$\$	Mid-term
15.6	TSP Project	Construct to major collector standards with two 11' travel lanes and 6' wide shoulders on both sides. Incorporates systemic safety improvements.	\$\$\$\$	Long-term
15.7	Guardrail Installation	Install guardrail in locations with a high roadside hazard rating.	\$\$	Long-term

^{*} Project should be implemented during planned Pavement Preservation Project where feasible.

PRAIRIE ROAD

AWBREY LANE TO OR 99W

ROAD CHARACTERISTICS

SEGMENT LENGTH: 6 MILES

ADT: 2,500-5,000

OF LANES: 2

LANE WIDTH: 10.5′-12.5′

SHOULDER WIDTH: 2'-5', PAVED

POSTED SPEED: NONE

CRASH TRENDS

36 CRASHES 1 FATAL 3 SERIOUS

TOP CRASH TYPES:

50%

FIXED OBJECT 22%
TURNING

G

19% REAR-END

TOP CONTRIBUTING FACTORS:

22%

IMPROPER DRIVING

19%

FAILURE TO AVOID 14%
FAILURE TO YIELD

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
16.1	Pavement Preservation: Prairie Road	Include wider 6" edge lines, Safety Edges, and centerline sinusoidal/mumble strips.	\$\$\$	Short-term
16.2	Systemic Stop- Controlled Intersection Upgrades	At all stop-controlled intersections, install intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, raised pavement markers, reflective tape on sign posts.*	\$\$	Short-term
16.3	Prairie Road/Beacon Drive: Phase 1	Relocate Stop sign on westbound approach.*	\$	Short-term
16.4	Prairie Road/Sovern Lane: Phase 1	Install flashing beacon on intersection warning sign on Sovern Lane.*	\$	Short-term
16.5	Speed Study: Prairie Road	Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed.*	\$	Short-term
16.6	Speed Feedback Signs	Install speed feedback signs on both ends of corridor.	\$	Mid-term
16.7	Systemic Curve Warning Upgrades	Install systemic curve warning upgrades incuding advanced warning signs, chevrons, post-mounted or guardrail-mounted delineators, speed feedback signs.	\$\$	Mid-term
16.8	Prairie Road/Beacon Drive: Phase 2	Evaluate effectiveness of short-term treatments. If crash patterns persist, Install Through Route Activated Warning System (TRAWS).	\$\$	Mid-term
16.9	Prairie Road/Sovern Lane: Phase 2	Evaluate effectiveness of short-term treatments. If crash patterns persist, Install Through Route Activated Warning System (TRAWS).	\$\$	Mid-term
16.10	TSP Project	Construct to major collector standards with two 11' travel lanes and 6' wide shoulders on both sides. Incorporates systemic safety improvements.	\$\$\$	Long-term

^{*} Project should be implemented during planned Pavement Preservation Project where feasible.

RIVER ROAD

BEACON DRIVE TO OR 99W

ROAD CHARACTERISTICS

SEGMENT LENGTH: 8 MILES

ADT: 5,000-6,000

OF LANES: 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: >5', PAVED

POSTED SPEED: NONE

CRASH TRENDS

72 CRASHES 2 FATAL

TOP CRASH TYPES:

26%

24% REAR-END 21%
FIXED
OBJECT

TURNING

TOP CONTRIBUTING FACTORS:

26%

FAILURE TO YIELD 18%

FAILURE TO AVOID 8%

IMPROPER DRIVING

PROJ #	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
17.1	Curve Warning Improvements	Install curve warning upgrades at horizontal curve near MP 1.0 including profiled edgeline striping, chevrons, raised pavement markers, and post-mounted delineators.	\$\$	Short-term
17.2	Systemic Stop- Controlled Intersection Upgrades	At all stop-controlled intersections, install intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, postmounted delineators, raised pavement markers, reflective tape on sign posts.	\$\$	Mid-term
17.3	Speed Management Strategies	Install speed management strategies in urban-rural transition zones including speed feedback signs, optical speed bars, gateway sign treatments, step-down speed limits.	\$\$	Mid-term
17.4	Passing Zone Evaluation	Review and modify passing zones to restrict passing in areas with higher driveway density and near curves. Include coordination with Thistledown Farm Market.	\$	Mid-term
17.5	River Road/ Beacon Drive Intersection	Install roundabout (City of Eugene project).	\$\$\$\$	Mid-term
17.6	Pavement Preservation: River Road	Include wider 6" edge lines, Safety Edges, and centerline sinusoidal/mumble strips.	\$\$\$	Long-term
17.7	TSP Project	Construct to minor arterial standards with two 11' travel lanes and 5' wide shoulders with 2' buffer on both sides. Incorporates systemic safety improvements. Evaluate feasibility of constructing a continuous left-turn lane.	\$\$\$\$	Long-term

ROW RIVER ROAD - NORTH

COTTAGE GROVE UGB TO CERRO GORDO ROAD

ROAD CHARACTERISTICS

SEGMENT LENGTH: 1.6 MILES

ADT: 5,000

OF LANES: 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: 0'-4', PAVED

POSTED SPEED: 45 MPH

CRASH TRENDS

20 CRASHES O FATAL 3 SERIOUS

TOP CRASH TYPES:

40%

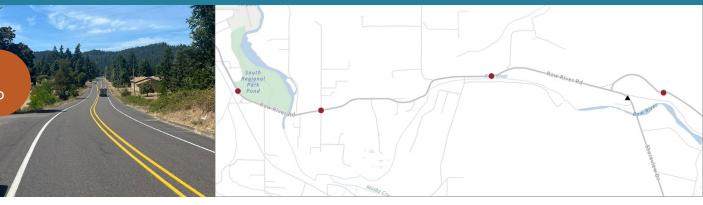
FIXED OBJECT

30%

TURNING

TOP CONTRIBUTING FACTORS:

25%
IMPROPER


DRIVING

20%

TOO FAST

15%

FAILURE TO YIELD

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
18.1	Systemic Curve Warning Upgrades	Install systemic curve warning upgrades including advanced warning signs, chevrons, post-mounted or guardrail-mounted delineators, speed feedback signs.	\$\$	Short-term
18.2	Row River Bridge Improvements: Phase 1	Install delineators on Row River Bridge walls; Install static or dynamic bicycle use warning signage on approaches to Row River Bridge.	\$	Short-term
18.3	RowRiver Trail Crossing	Install marked crosswalk at existing Row River trail crossing near MP 3.5	\$	Short-term
18.4	Row River Road/Sears Road Intersection	Install overhead or post-mounted (on intersection warning sign) flashing beacon.	\$	Short-term
18.5	Speed Study: Row River Road - North	Conduct speed study to determine appropriate posted speed limit and pursue speed limit change, if needed.	\$	Short-term
18.6	Speed Management Strategies	Install speed management strategies in urban-rural transition zones including speed feedback signs, optical speed bars, gateway sign treatments, step-down speed limits.	\$\$	Mid-term
18.7	Systemic Stop- Controlled Intersection Upgrades	At all stop-controlled intersections, install intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, raised pavement markers, reflective tape on sign posts.	\$\$	Mid-term
18.8	Row River Bridge Improvements: Phase 2	Install cantilever pedestrian path on north side of Row River Bridge.	\$\$\$\$	Long-term
18.9	TSP Project	Construct to major collector standards with center turn lane and bikeable shoulders.	\$\$\$\$	Long-term
18.10	Pavement Preservation: Row River Road – North	Include wider 6" edge lines and centerline sinusoidal/mumble strips. Install High Friction Surface Treatment on curve near MP 3.3	\$\$\$	Long-term

ROW RIVER ROAD - SOUTH

SHOREVIEW DRIVE/DORENA TO SHARPS CREEK ROAD

SEGMENT LENGTH: 4.3 MILES

ADT: NOT AVAILABLE

OF LANES: 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: 0'-4', PAVED

POSTED SPEED: 45 MPH, TRANSITIONS

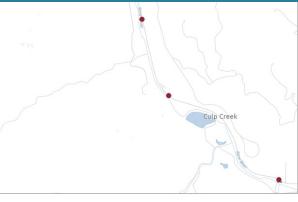
TO 25 MPH CLOSE TO DORENA

CRASH TRENDS

13 3 **CRASHES** FATAL **SERIOUS**

TOP CRASH TYPES:

62% 15% FIXED OBJECT **REAR-END**


TOP CONTRIBUTING FACTORS:

31% **IMPROPER** DRIVING

23% **RECKLESS** DRIVING

15% **FATIGUE**

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
19.1	Systemic Curve Warning Upgrades	Install systemic curve warning upgrades including advanced warning signs, chevrons, post-mounted or guardrail-mounted delineators, speed feedback signs.*	\$\$	Mid-term
19.2	Roadway Improvements near Elementary School	Install permanent speed feedback signs near elementary schools; Install optical speed bars on approaches to elementary school crossings.*	\$	Mid-term
19.3	Systemic Stop- Controlled Intersection Upgrades	At all stop-controlled intersections, install intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, raised pavement markers, reflective tape on sign posts.*	\$\$	Mid-term
19.4	Pavement Preservation: Row River Road – South	Include wider 6" edge lines and centerline sinusoidal/ mumble strips. Install High Friction Surface Treatment on curve near MP 3.3	\$\$\$	Mid-term

^{*} Project should be implemented during planned Pavement Preservation Project where feasible.

TERRITORIAL HIGHWAY - NORTH

NORTHERN COUNTY LINE TO OR 126

ROAD CHARACTERISTICS

SEGMENT LENGTH: 7 MILES

ADT: ~2,000 NORTH OF CLEARK LAKE ROAD, ~7,000 NEAR ELMIRA AND OR 126

OF LANES: 2

LANE WIDTH: 10.5′-12.5′

SHOULDER WIDTH: 0'-2', GRAVEL

POSTED SPEED: 35 MPH-50 MPH, 20 MPH

SCHOOL ZONE

CRASH TRENDS

119	5	11
CRASHES	FATAL	SERIOUS

TOP CRASH TYPES:

24%	22%	18%
TURNING	ANGLE	FIXED OBJECT

TOP CONTRIBUTING FACTORS:

34%	13%	6%
FAILURE TO YIELD	IMPROPER DRIVING	TOO FAST

RECENT/PLANNED PROJECTS

Curve warning upgrades and improved signing and striping as part of ARTS Project in 2027.

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
20.1	Clear Lake Road/Territorial Highway Intersection: Phase 1	Install stop-controlled intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, reflective tape on sign posts; Install optical speed bars or transverse rumble strips on stop-controlled approaches.	\$	Short-term
20.2	Applegate Trail/ Territorial Hwy Intersection	Install stop-controlled intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, reflective tape on sign posts; Install "Yield" sign and pavement markings for the left-turn movement onto Applegate Trail; Install optical speed bars on southbound Applegate Trail approach.	\$	Short-term
20.3	Multi-use Path	Install multi-use path between Veneta and Elmira.	\$\$\$\$	Mid-term
20.4	Territorial Highway/OR 36 Intresection	Install transverse rumble strips on northbound approach.	\$\$	Mid-term
20.5	Speed Management Strategies	Install speed management strategies in urban-rural transition zones including speed feedback signs, optical speed bars, gateway sign treatments, stepdown speed limits.	\$	Mid-term
20.6	Systemic Stop- Controlled Intersection Upgrades	At all stop-controlled intersections, install intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, raised pavement markers, reflective tape on sign posts.	\$	Mid-term
20.7	Veneta TSP Project	Install roundabout at Territorial Highway at Jeans Road.	\$\$\$\$	Long-term
20.8	Roadway Reconstruction (Fir Grove Lane to Clear Lake Road)	Install 6' shoulders with rumble strips and recessed pavement markers; Flatten vertical curve and replace Inman Branch culvert.	\$\$\$\$	Long-term
20.9	Clear Lake Road/Territorial Highway Intersection: Phase 2	Measure the effectiveness of the Short-term solution, above. If severe crashes persist, consider a single-lane roundabout.	\$\$\$\$	Long-term

TERRITORIAL HIGHWAY - SOUTH

LORANE HIGHWAY TO MARLOW ROAD

ROAD CHARACTERISTICS

SEGMENT LENGTH: 1.1 MILES

ADT: ~1800

OF LANES: 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: 0'-2', GRAVEL POSTED SPEED: 30 MPH AT CURVE

CRASH TRENDS

TOP CRASH TYPES:

50%

FIXED OBJECT

SIDE-SWIPE MEETING

14%

TOP CONTRIBUTING FACTORS:

36%

IMPROPER DRIVING

TOO FAST

RECENT/PLANNED PROJECTS

Curve warning upgrades and improved signing and striping as part of ARTS Project in 2027.

RECOMMENDED PROJECTS

PROJ #	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
21.1	Systemic Stop-Controlled Intersection Upgrades	At all stop-controlled intersections, install intersection visibility upgrades including double-wide stop bar, oversized stop sign, "Stop Ahead" pavement markings and advanced signs, post-mounted delineators, raised pavement markers, reflective tape on sign posts.	\$\$	Short-term
21.2	Territorial Highway/ Lorane Highway Interseciton: Phase 1	Install Through Route Activated Warning System (TRAWS).	\$\$\$	Mid-term
21.3	Roadway Reconstruction (Gillespie Corners to town of Lorane)	Realign horizontal curves, install 6' wide shoulders, install centerline and shoulder rumble strips, and upgrade curve warning signing and striping.	\$\$\$\$	Long-term
21.4	Territorial Highway/ Lorane Highway Interseciton: Phase 2	Measure the effectiveness of the Short-term solution, above. If severe crashes persist, consider a single-lane roundabout.	\$\$\$\$	Long-term

22.

WARTHEN ROAD

SHEFFLER ROAD TO TERRITORIAL HIGHWAY

ROAD CHARACTERISTICS

SEGMENT LENGTH: 1 MILE

ADT: 1,000-2,500 **# OF LANES:** 2

LANE WIDTH: 10.5'-12.5'

SHOULDER WIDTH: ~0', GRAVEL

POSTED SPEED: 45 MPH

CRASH TRENDS

12 CRASHES

TOP CRASH TYPES:

58%

FIXED OBJECT

17%HEAD-ON

TOP CONTRIBUTING FACTORS:

33%

TOO FAST

RECENT/PLANNED PROJECTS

Crosswalk striping at Warthen Road and Territorial Highway intersection recently completed as part of Pavement Preservation Projects in 2025.

PROJECT NUMBER	PROJECT NAME	DESCRIPTION	COST RANGE	TIMELINE
22.1	Fern Ridge School District Safe Routes to School	Complete study to support Fern Ridge School District's desire for safer walking and biking along Warthen Road from Falcon Drive to Territorial Highway. Study alternatives such as sidewalks and bicycle lanes, separated pedestrian paths, wider paved shoulders, and advisory bike lanes.	\$	Mid-term
22.2	Safe Routes to School Implementation	Complete bicycle and pedestrian improvements identified in Fern Ridge School District Safe Routes to School plan.	\$\$\$	Long-term
22.3	TSP Project	Construct to minor collector standards with 11' travel lanes and 4' wide shoulders. Consider mumble/rumble strips, safety edge, and other safety treatments.	\$\$\$	Long-term