How did dinosaurs leave tracks?

November 4, 2022

This is But Why: A Podcast for Curious Kids, from Vermont Public. On this show, we let your amazing questions lead us in all kinds of different directions as we try to find answers for all the things you're wondering about. We've been making this show for six and a half years, but we've never made a dinosaur episode. That's outrageous! It's not because you haven't sent us dinosaur questions: we could do a whole year of episodes with just dino questions. But it's because we kept wanting to be able to go on a field trip to show you something really cool for our first dinosaur episode. And then the COVID-19 pandemic hit and we couldn't travel anywhere. So we just kept putting off the episode and hoping something really cool would appear to help us figure out when the right time was.

Then, last summer, news broke of a cool dinosaur discovery in Glen Rose, Texas. Some new dinosaur footprints were uncovered. Well, old dinosaur footprints, since dinosaurs aren't alive anymore to make new ones. But new to all of us. They were uncovered in a riverbed when the water level got really low because of all the dry hot weather Texas had been having. That's called drought. News shows from around the world were suddenly visiting this small Texas town and talking about this cool new find. But all those news shows were for adults, and you and I know no one loves dinosaurs more than kids. So we took it as a sign to get ourselves out there and share it with you.

Melody and I hopped on a plane and flew out to Texas to see Dinosaur Valley State Park for ourselves. On a very hot fall day, we met the guy in charge of running the park.

I'm Jeff Davis, and my official title is park superintendent of Dinosaur Valley State Park. But when I'm in front of a group, I'm just Ranger Jeff.

And are you a dinosaur expert?

I'm not a dinosaur expert. Maybe someday, give me 10 years and we'll see. It's been put in the news that I'm a dinosaur expert, but I'm definitely not; I'm a park ranger. There's a lot of stuff I know. And I've learned a lot about dinosaurs in my time at Dinosaur Valley. But I would not claim to be an expert.
Jeff is being modest. He does know a lot about dinosaurs, particularly the ones that have left visible signs in this state park. So we had him show us around. From the park headquarters, we followed Jeff in our car along the dusty road to a parking area. Even though it was October it was about 95 degrees Fahrenheit and the sun was beating down. Melody and I followed Jeff down a little ravine into a riverbed. There was no water in the riverbed, but there were dinosaur footprints.

Jane 02:58
Now you know we're a podcast so kids can't see where we are. Can you describe the landscape and where we are and then the amazing thing we're looking at?

Jeff Davis 03:05
We are standing in the riverbed of the Paluxy River. It's a very short river in Texas. It feeds into the Brazos River just a few miles from here. We are standing on beds of limestone. This is from the Cretaceous era. So the rocks we're standing on are about 110 to 113 million years old. And we are surrounded by a mix of different trees that we can see on the hills around us in this little valley we call dinosaur valley. A lot of oak trees and ash junipers, mesquites and a wide variety of typical Texas trees. And it's a beautiful place, with or without the river flowing. Right now the river is very dry from the drought this summer, but it's a very pretty place. And the reason we're here, the thing that makes this so special, is the dinosaur tracks that we're looking at. Some of them are super easy to tell that that's a dinosaur track, you can clearly see three toes and it looks like, you know, if you made a stamp of a dinosaur footprint, that's what it would look like.

Jane 03:54
Those are footprints made by a dinosaur called an Acrocanthosaurus. More on them in a minute.

Jeff Davis 03:59
And then others are just more of a round shape. And those belong to a dinosaur called Sauroposeidon and you have to get a little closer, you have to get in a little bit more to see some of the details of their toes and things, because their foot was more like an elephant's you know, not as much detail. Sauroposeidon was a much bigger critter. You know, they're more like an Apatosaurus or Brontosaurus type. He would have four legs, very long neck, very long tail. They were herbivores, so they ate plants and they had that long neck to reach the tall trees. They weighed up to 44 tons. Huge creatures that could stand and I know the kids can't see what we're looking at, but you know, they could stand and they could look over this treeline that's here and see over that. So very long necks, possibly the tallest dinosaur. They didn't weigh as much as some others but they were definitely some of the taller dinosaurs that ever walked the earth. So you know they have huge footprints that kids can sit in. Like sitting in a bathtub almost.

Jane 04:52
If your footprint was so big, it was almost the size of a bathtub, think of how big your body would have to be! Sauroposeidon were so tall, they could look over the top of a four or five storey house. You'd have to balance three or four giraffes on top of one another, which seems kind of dangerous, just to have the top giraffe at eye level with a Sauroposeidon. As Jeff mentioned, paleontologists think this dinosaur may have been the tallest animal that has ever lived. But in this dry riverbed, Jeff mentioned
there are two different types of footprints. The other footprints don't look like a big bathtub. They very clearly have three long toes and they're the size of a big dinner plate. These tracks were made by a dinosaur called Acrocanthosaurus.

Jeff Davis 05:45
And then Acrocanthosaurus is a lot more like a Tyranosaurus rex in body shape. So bipedal, walks on two legs; carnivores, they're eating other animals like Sauroposeidon. But they had a large ridge down their back. So their name, Acrocanthosaurus, refers to that ridge that runs on their back. Not quite a sail, but definitely a ridge of large bones that ran down their back.

Jane 06:07
Would these two dinosaurs have been walking in this riverbed at the same time?

Jeff Davis 06:11
Just to take a step back, they would have not been walking in a riverbed at the time. They would have been walking where they were walking at the same time, but they were walking along a very thick, sticky mud along a shallow edge of a seashore. So this was what's called an intertidal zone. So those tide waters would come and go and cover up the tracks. And that's why they were preserved. So it looked very different than it does now. We would have been standing on a beach basically a very thick, muddy beach. So if you think of when you walk across thick mud and you sink up to your knees in it, and you pull your foot out, and it pulls your shoe off, think of that kind of thick, sticky mud. And so these dancers were walking in that kind of stuff, their tracks were left behind in that mud. And then because it's an intertidal zone, the tide waters came in and brought other silt and sediment and laid over the top of the tracks. And that might have happened minutes, might have happened even days later, when these got covered up. But within the time that those tracks were still preserved, still in the mud, they were covered and protected. And then over millions of years, that became limestone. And now we are seeing the river carve down through those layers and expose the tracks for us to see.

People always want to know how does a dinosaur track sit there for 113 million years? And the truth is it didn't; it was covered up by all the depth of the ground that we see around us. And it was it was much later that it was exposed, just in the last few years, last few decades that these might have been exposed.

Jane 07:27
Did you catch all of that? What looks today like a riverbed with steep banks used to actually be a seashore. It's pretty amazing to think about how different this dry landscape looks now to what it would have been like when these dinosaurs were loping along making these footprints. Remember when Jeff said that there Sauroposeidon, that big dinosaur with the long tail and the very tall neck, was an herbivore, meaning it ate plants? And that the Acrocanthosaurus, the smaller one that looked more like a T rex with a ridge running down its back, was a carnivore, meaning it ate other animals? Well, it's possible that the Acrocanthosaurus that made these tracks were actually following, or maybe even hunting, the Sauroposeidon. Of course, we'll never really know for sure what was happening while they made these tracks. Maybe they just walked along the muddy seashore a few hours apart. But when you look at these tracks and picture the landscape, you can almost imagine yourself standing right there
watching these dinosaurs move around. Before you get too deep into your dinosaur daydreams, let's ask Jeff some of the questions you've sent us about dinosaurs.

Rowan 08:40
My name is Rowan. I'm four years old, and I live in Philadelphia. My question is when did dinosaurs live?

Jane 08:48
I said it's fun to imagine yourself standing there watching the Acrocanthosaurus chase the Sauroposeidon, but that could never really happen because dinosaurs like those lived and died long before humans were ever on the earth. The age of the dinosaurs is known as the Mesozoic era. Scientists are always learning new things about dinosaurs, but from what they know so far, dinosaurs walked the earth more than 230 million years ago, starting during the Triassic Period. Dinosaurs evolved from earlier reptiles, and they were lots of different sizes and shapes. There were other reptiles around, too, that weren't dinosaurs, during the Mesozoic era, lots of marine reptiles, for example. And there were other types of animals too, like mammals. As the landscape and climate of the earth shifted and changed, some dinosaurs died out and others became more dominant. After the Triassic period came what's known as the Jurassic period, and after the Jurassic period was the Cretaceous period. It was during the Cretaceous that the biggest dinosaurs lived like the ones we've just been learning about, Sauroposeidon.

Isla 10:02
Hi, my name is Isla and I live in Kalispell, Montana. And I'm seven years old. And I wonder how many dinosaurs were alive during the Cretaceous time period.

Jane 10:15
Now, I'm not going to ask you to tell us how many individual dinosaurs were alive, like, you know, this one, and that one and this one and that one. But how many different kinds of dinosaurs were alive in the Cretaceous?

Jeff Davis 10:25
One of the amazing things about science and why I like it so much is that it's always left open to new discoveries. You know, there's never a point where a scientist's gonna go, "Okay, that's it. We know everything there is to know about dinosaurs." That will never ever happen. And the reason that's so important is because it lets us continue to discover things; it keeps our minds open, so we can find out more. So as of now, somewhere around 350 or so species of dinosaurs from the Cretaceous had been discovered. We have just a couple of those species here. But it's estimated that there may be up to about 1000 or so that that exist--existed. And we just haven't discovered all those other ones yet. So the cool thing is, there's so much science and so much discovery left to be done. And all of all these kiddos that are growin' up right now have the chance to be those people to discover that.

Jane 11:11
Isn't that awesome? If you like learning about dinosaurs, you never have to stop. You can learn about dinosaurs your whole life. And maybe you'll be one of the people who helps the world learn something
new about these amazing prehistoric creatures. But if there's one thing we all learn really early about dinosaurs, it's that they mostly don't exist anymore. And a lot of you have questions about that. Daphne, who's five, wants to know why did dinosaurs live a long time ago? And Kodiak, who's three and lives in Salem, Massachusetts, wants to know: why did they all die?

Violet 11:46
My name is Violet. And I'm five years old. And I live in Raleigh, North Carolina. Why are dinosaurs extinct?

Grey 11:53
My name is Grey. I live in Forest, Virginia. And I'm four years old. How did the asteroid kill the dinosaurs?

Sydney 12:04
My name is Sydney and I'm four years old. I come from Chicago. And I want to know why dinosaurs aren't alive yet--now.

Noah 12:15
I'm Noah, from Richmond, Virginia. I want to know how dinosaurs get extinct.

Grace 12:23
My name is Grace. I'm seven years old, and I'm from Southern California. Why did the dinosaurs go extinct and how?

Patrick 12:33
I'm Patrick and I'm five years old. I'm from Raleigh, North Carolina. How did dinosaurs get extinct?

Archer 12:43
My name is Archer. And I'm five years old. And I live Lancaster, Pennsylvania. And my question is: how, what killed the dinosaurs?

Simon 12:58
My name is Simon and I live in Fairfield, Connecticut. And my question is how many years were dinosaurs extinct for?

Noah 13:07
My name is Noah. I'm 10 years old. I live in Glendale, Arizona. How did dinosaurs go extinct?

Jane 13:16
Let's get some answers here from Jeff.

Jeff Davis 13:18
So dinosaurs mostly died out 65 million years ago or so. And most people seem to agree right now that there was a large asteroid that hit the planet and killed off, caused a huge extinction, excuse me, that,
you know, that led to the destruction of most of the dinosaurs. But not all dinosaurs died out. Now there's no dinosaurs left alive today. But their descendants are. And that is the birds that we see. All the different birds we see around are the descendants of dinosaurs that lived millions of years ago.

Jane 13:45
So you mentioned the asteroid. And there are some kids who'd like to know how did the asteroid kill off the dinosaurs because it wasn't like one asteroid came down and hit all the dinosaurs at once and killed them all off in one fell swoop.

Jeff Davis 13:56
Right. You know, when when something that big with that much power, that much energy hits the earth, you know, it's like a gigantic bomb, like the biggest bomb you can imagine going off. And so it blast a lot of dirt and other material into the sky. And that basically causes a huge cloud of dirt. And that leads to a winter all over the earth. And so the suddenly the, the climate has changed drastically in just a short few weeks, you know, and animals do adapt and evolve and change over time. But they need a lot more time and a few weeks or a few months to do that. And so their environment changed so drastically that they couldn't survive anymore.

Jane 14:30
So some of it might have been about temperature and sunlight. But then also, of course, because of the sunlight, it changed what vegetation was alive. So animals couldn't find food, that kind of thing.

Jeff Davis 14:39
Absolutely. You know, the plants that we see all around us the plants that would have been here at the time that dinosaurs died, they needed sunlight, just like our plants do today. And so when the sunlight was blocked out, the plants died. The herbivores had nothing to eat, and they probably died first. And then the carnivores had nothing to eat when the herbivores were all gone. And so over time, over a period of months or or years, potentially, you know that it led to a great extinction. And we lost most of the dinosaurs.

Jane 15:04
So some of the animals that did survive that mass extinction led to the animals we see today, including, most paleontologists believe, modern birds. And remember, there were lots of other types of animals alongside the dinosaurs: insects, mammals, other types of reptiles, aquatic animals. Those that survived the mass extinction lead to many of today's modern animals. In just a minute, we'll talk more about how we know that dinosaurs are real, since no humans were around to see them.

Jane 15:39
This is But Why: a Podcast for Curious Kids. I'm Jane Lindholm and today we're talking with Jeff Davis, the head ranger, or superintendent, of dinosaur Valley State Park in Glen Rose, Texas. Melody and I went to talk with Jeff at the park because we wanted to see the dinosaur footprints the park is known for. Jeff has been telling us about the dinosaurs that made those footprints, the very large Sauroposeidon and the T-rex-like Acrocanthosaurus. And we've been talking about what killed off the
Hartley 16:18
My name is Hartley. I live in Portland, Maine, and I'm four years old. How do we know? Dinosaurs are real?

Jeff Davis 16:27
Yeah, it would be so cool if we could have been alive to see them, have pictures and videos of actual dinosaurs, but we don't. It was it was way too far in the past, of course. And so luckily, we have a lot of evidence that the dinosaurs have left us. That can be anything from the tracks like we see here, where their footprints, their tracks, were preserved and silt and sediment and left and preserved for us, of course, to other fossilized remains like skeletons, and even sometimes skin and things that are found, all kinds of cool stuff that were left behind. And so it takes people entire lifetimes of study and understanding to know what they're looking for. You know, it's not just based on guesses. It's a lot of science that goes into that. And it's there's a lot of evidence that we have, we'll never know everything for sure. But we'll constantly learn more. You know, the idea of what a dinosaur looks like has changed just in my lifetime for sure. And so, I'm sure 50 years from now, we'll know a lot more than we do currently. But we are constantly finding more and more evidence, whether it be a fossilized bone, a fossilized trackway, whatever it might be that they left behind.

Jane 17:29
And how do they know that these tracks at Dinosaur Valley State Park are real?

Jeff Davis 17:33
We know that these are dinosaur tracks based on a lot of different evidence. And one of those is, you know, comparing the different geology. So you know, we can look at these layers of limestone, compare them to other layers around the world. And we can understand how old this is. And so we can compare that to fossils that we found in similar age layers. And all of the evidence, you know, science builds on itself over time. And so just looking at that print by itself, I wouldn't be able to tell that, but when we take into account all of the other pieces of information that come to us from a wide variety of sciences: paleontology, ichnology, geology, all those different studies, we can put together a picture that tells us what that creature probably was. And again, scientists never say for sure, 100%, that was absolutely an Acrocanthosaurus track. You know, it's always possible that we could find new information that would tell us it was something a little bit different. But based on the best information we have right now, that's what we think it was. And part of that is because we have found Acrocanthosaurus skeletons in the nearby area from the same time period that match these tracks very closely.

Rowdy 18:31
My name is Rowdy and I'm four years old. And how do dinosaurs make their footprints?

Jane 18:38
Rowdy wants to know how do dinosaurs make their footprints, how did they leave footprints?
Jeff Davis 18:43
Yeah, so dinosaurs made footprints in the exact same way that we do. You know, if you go down to the beach, or you go to a muddy riverside or anywhere where there's ground is soft enough to leave a print behind and you walk there, even with your shoes on, you're going to leave shoe prints, right? And barefoot, you're going to leave a footprint. And so the dinosaurs did the same exact thing. Now they weighed a lot more than us generally. Some dinosaurs were smaller than humans. But the ones that we're looking at here today, these guys, the Acrocanthosaurus, the smaller of the two, weighed up to about seven tons. And then the big guy, Sauroposeidon, weighed up to 44 tons. And so when they walked in mind, they left at a very distinct print, moreso than a human would. And so their footprint was left the exact same way that our footprint is: as they as they stepped in the mud, it squished the mud up and around their foot. And then they would move their foot and step away and leave the next track, one after the other. And there are places in this park where we can see hundreds of feet of the same dinosaur walking.

Jane 19:33
And then it got covered over by other silt and debris. And that's what preserved these tracks. And eventually over time they turned into rock, right?

Jeff Davis 19:42
Yeah, so the stuff we're standing on now is a nice hard limestone that I would not want to hit my head on. But 113 million years ago, it was a soft, squishy mud and over a long period of time, that can solidify and fossilize into a rock. And because the footprints were covered over fairly quickly, you know maybe within hours, maybe a few days, they recovered over with sediment and silt, that preserved them and protected them and kept him from eroding away after all these years.

Ellis 20:07
I'm Ellis and I'm three years old. And I come from Concord, Massachusetts. I, I want to know, why did dinosaurs walk so much?

Jane 20:18
Ellis wants to know: why did dinosaurs walk so much?

Jeff Davis 20:21
I wanted to say they're just they were just way less lazy than us. But no, so dinosaurs didn't have technology. You know, technology for humans goes back 1000s of years, to the point that we were, you know, riding horses, maybe potentially or other animals that we could we could get on and ride.

Jane 20:37
Right, you're not talking about Game Boys and cell phones when you say technology. You're talking about all the kinds of tools that humans use to make life easier.

Jeff Davis 20:45
Absolutely, absolutely. You know, humans have been using technology from the first time, a human or one of our ancestors picked up a stick and used it as a tool, that's technology. It's much simpler than a Gameboy or, you know, whatever, whatever you can talk about. But you know, dinosaurs didn't have access to any of that. They, the only way for them to get around was to walk or to run, or to fly, whatever the case may be, swim, for whatever that particular creature was, but it was their body that they had to use to move around. And so for the for the ones that walked on land, that was their only option. If you want to get up and have something to eat that day, you got to walk there to get it.

Finn 21:17
Hello, my name is Finn, and I am six years old. And I live in Columbia, South Carolina. And my question is, how did dinosaurs get their names?

Connor 21:27
I'm Connor, and I'm three years old, and I live in Seattle? And I have a question: Why do dinosaurs get their names?

Liam 21:41
My name is Liam. And I am six years old. And I live in Virginia. And my question is, why do dinosaurs have hard names to say?

Jeff Davis 21:53
Yeah, one of the cool things in science is if you're the one who discovers it, you typically get to name it. And a lot of times they are named something Latin. And we do that because various scientists around the world speak different languages. So there's a common name for that animal. You know, we may call the raccoon, the raccoon, but someone from another country speaks a different language may call it something else. And so that animal is given a scientific name. It's usually based in an old language called Latin. And that name, that scientific name stays the same no matter where you go: Procyon lotor is the raccoon, it will never be anything else anywhere in the world. And so these are scientific names for these dinosaurs so Soroposeidon, you know, if you if you go somewhere else in the world and found another one, they'd be called the same thing there. And they give them names that are based on something about them. Sometimes it has the person who discovered its name in it. Sometimes it's, you know, something to do with the place where it was found. This Sauroposeidon, for example, has older names. It wasn't always called Soroposeidon, it's also been called Paluxysaurus, named for the river that we're standing in and where they were discovered, where these tracks were discovered. And so, so names sometimes change over time, but they're always named after something that relates to how they were discovered, who discovered them, or something about their shape or their activity or something something like that.

Jane 23:04
And you said Sauroposeidon and Acrocanthosaurus have names that relate to what they look like.

Jeff Davis 23:11
Absolutely. So you know, Sauroposeidon was, his name refers to this, this you know, thunderous god lizard. He was just so big. And I'm sure that if he's walking by you probably feel it in the ground, you know. And then Acrocanthosaurus had a spine, a large ridge that ran on his back, which was different from T-rex, which is a kind of similarly-shaped dinosaur. And so the he's named after that ridge that runs on his back.

Jane 23:34
So you've kind of answered Liam's question, which is why dinosaurs have such hard names. And that's partly because sometimes human gives humans give them those hard names, but also their Latin names are in a language that most kids today don't speak. So they're, they're a little bit unfamiliar.

Jeff Davis 23:49
Absolutely. You know, Latin has been a language of science for hundreds of years. And so it probably won't go away. You know, it probably gives them a little extra gravitas, a little extra credibility, makes them seem a little more impressive when they have this really cool Latin name, you know, and we'll just call it squirrel. It's got a really cool Latin name out there.

James 24:08
My name's James, and I live in Oxford, Ohio. And I'm four. Why did dinosaurs not live in Ohio?

Jane 24:19
I looked into this question, James. And the Ohio Department of Natural Resources says dinosaurs probably DID live in Ohio at the same time they were roaming around other parts of the eastern United States. But no dinosaur fossils have been found in Ohio. And the Department says on its webpage that that's because "no rocks from that era survived here." So there you have it.

Jane 24:42
Before we left Dinosaur Valley State Park, we asked Jeff Davis to show us a few other dinosaur footprints. The prints are scattered throughout the park. And it was a different set of prints in a different spot that made the park famous around the world this past summer. This was all because very very dry conditions exposed some new footprints.

Jeff Davis 25:02
Drought is a scary thing because if we don't have rain, we can't grow crops. It causes all kinds of problems for us. But there can be some good aspects to it. Every cloud has a silver lining. And so in this case it exposed some dinosaur tracks we've not seen before. So this is sometimes called the Lone Ranger trackway because one big Acrocanthosaurus dinosaur walked hundreds of feet of exposed tracks here and we can kind of follow along and see where he went. But they're, the first two or three tracks in this trackway that we're standing right above right now, were not exposed until recently. And then during the drought, the water disappeared, and all the sediment was able to be swept away. And we can see that there were tracks. It's very likely that there's more tracks underneath the rock ledges behind us that we can't see yet. But 10 years from now, six months from now, who knows when the next flood might come through and wash away more of this and we'll see more tracks. This trackway was cleaned off about 20 years ago, you know, when I was a young person, and you know, it's
interesting to see it now and to get better measurements, better recordings using modern techniques. You know, there were not things like drones in in 2000, that you could fly over this and take photographs and video and measurements from. And that kind of technology exists now. And we were able to use that to capture some information about these that we didn't have 20 years ago. And so in the next flood that happens, or the next drought, excuse me, that happens 20 years from now, who knows what the technology might be, or 100 years from now that we can learn even more about these tracks.

Jane 26:25
So some of these tracks that were uncovered this summer are now covered again by water. Where are those?

Jeff Davis 26:30
So we could follow this trackway that we're standing above right out there, and there's probably 20 or so tracks exposed. But there's almost 200 tracks in this entire trackway. And so we could just follow this right to the edge of the water and it would disappear into it. We can even walk along beside the water and see some places where you can still see the tracks through the water. Let's do that.

Jeff Davis 26:47
Let's do it.

Jane 26:50
So this is what all the hype was about this summer.

Jeff Davis 26:52
It is.

Jane 26:53
Were you surprised by how many worldwide news outlets wanted to talk about these dinosaur footprints?

Jeff Davis 26:59
I was shocked, shocked. And it just built up over time. You know, it started out the first couple of days, we had a video that was taken of the tracks that went viral. And then that got picked up by some of the big news agencies. And from there, it just spread and spread and spread like wildfire. And it was it was a pretty overwhelming week, but in a very good way. You know, we figure that something like three and a half billion with a B, billion people might have seen that story around the world. That's almost half the planet saw our Parks story, which is pretty amazing.

Jane 27:26
Well, that's part of why we wanted to come here because I mean, first of all, we wanted to see it, but also because there was all this news and kids may have heard about it. But there wasn't a lot of new stories being made for kids. And as we all know, kids love dinosaurs even more than adults. So we thought, you know, we better have a kid's story about it.
Jeff Davis 27:44
Yeah. And kids are just as important, if not more important to us and us telling the story of his place as adults, because you know, the kids, the people who are kids right now, in 20 years, 30 years, 40 years, they’re going to be the adults that are making the decisions about what happens to these tracks. They’ll be the park rangers who are working or they’ll be the legislators, you know, at the Statehouse that are deciding, are we going to continue to give money to state parks, and places like that to protect these things or not? And so it's super important to us that kids see these things and understand how amazing and how cool they are, and why they matter so much. And so we want them to hear that story.

Jane 28:17
That's right, you will be making decisions in the future. So now is the time to learn all you can about the things that interest and excite you. And remember, Jeff said, there's still a ton of information we don't know about dinosaurs. So there's plenty to be discovered by kids like you. Maybe you'll be the one who discovers something really cool. And we can all learn from you. And you know, it was really cool for me and Melody to be able to go out and see these dinosaur footprints, to see where their feet got stuck in the mud and imagine a Sauroposeidon towering over me. It was awe inspiring. And it still feels that way for Jeff Davis, too.

Jeff Davis 28:55
My favorite thing about dinosaur tracks here is that I look at it and I see the details and I see where they walked. And it makes these animals come alive for me. It makes me realize that this is not a movie monster. You know, it's a real creature, a real life animal that did walk through this area. It's been life changing for me for sure. It's just it's just such a wonderful thing and to share it with people from all around the world. You know, all these kids come here and they just wonder at these things. And I hope it makes it feel as real for them as it does for me.

Jane 29:20
Thanks so much to park superintendent Jeff Davis and the rest of the rangers at Dinosaur Valley State Park in Glen Rose, Texas for letting us visit. We covered a lot in this episode. But I know some of you listening today have sent in other dinosaur questions that we didn't get to. As I said, we could do a whole year of episodes just about dinosaurs and we'd still probably not have answered all of your great questions. So I promise we will try to make sure we do another dinosaur episode before another six years go by. In the meantime, if you want to see pictures of the dinosaur tracks we visited, find But Why Kids on Instagram, TikTok or YouTube. We have pictures and videos from our trip on those sites. And if you have a question about anything, grab your adult and have them record you asking it. Tell us your first name, where you live and how old you are, along with what you want us to do an episode about, and then have your adult send the file to questions@butwhykids.org. But Why is produced by Melody Bodette and me, Jane Lindholm, at Vermont Public and distributed by PRX. Our theme music was composed and performed by Luke Reynolds. We'll be back in two weeks with an all new episode. Until then, stay curious!